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1 Introduction

The aim of this course is to introduce a suitable generalisation of Euclidean space, namely the manifold,
on which one can make sense of various concepts introduced in calculus. As a guiding example, consider
the function which outputs the temperature at each point on the surface of the earth. What would it
mean for such a function to be differentiable? Could such a function be integrated?

1.1 Course information

The content of the course is an amalgamation of results from various notes and books I used to learn
about manifolds. Below I list some references I am at least somewhat familiar with; I recommend
that you find a few (not necessarily from this list) that you enjoy reading and do not restrict yourself
to a specific text in understanding each concept:

• [Bow17] is an updated version of a course I took, which heavily inspired this course (these notes
are no longer accessible online, I put a pdf on the Canvas page).

• [Lee12] is a comprehensive introductory text, lots of good exercise problems.

• [Lot21] is a geometrically inclined set of notes, which I have frequently drawn upon.

• [Mil67] is a classical text, includes an appendix classifying 1-dimensional manifolds.

• [Spi18] is the university recommended text, very concise.

The prerequisites for the course are a strong background in multivariable calculus (in particular smooth
maps and the inverse function theorem) and linear algebra (vector spaces, bases, dimension, subspaces,
linear maps etc.). Although topology is not a formal prerequisite (we will introduce all the notions
we need), I would recommend an introductory course be taken alongside.

The four homework sets will consist of unproven results from the notes as well as specific problems to
deepen your understanding of concepts or provide a new perspective on them. The first quiz will be a
review of background fundamentals (linear algebra, multivariable calculus, topology) and some basic
notions from the first few classes. The second and third quiz consist of new problems based on the
concepts covered in class. The quizzes, and solutions to the homework, are available upon request.
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1.2 What is (and is not) a manifold?

The concepts of calculus make sense locally, by which we mean one only needs to know how a function
behaves near a given point. We can thus reasonably expect to make sense of those same concepts
in more general spaces where one only asks for a Euclidean structure locally, allowing for the global
picture to potentially look very different from Euclidean space. A slightly more precise formulation
of what it means to be locally Euclidean is given by the notion of coordinates; for example, near any
point on the sphere one needs only two numbers to smoothly parametrise the space.

Loosely, a manifold will be a space formed by patching together small regions in which the object has
a Euclidean structure. This is in strong analogy with the way in which maps of the earth are created
through the use of charts and atlases (terms we will soon see in a mathematical context). Before
diving into the formal definition of a manifold, we first familiarise ourselves with some examples (and
non-examples) of manifolds with the idea in mind that a manifold should be an object composed of
regions that can be smoothly deformed to look like Euclidean space.

1.2.1 Examples of manifolds in Euclidean space

We first look at some examples of manifolds that arise as subsets of Euclidean space:

• For each non-negative integer, n, the n-dimensional Euclidean space, Rn, is an n-dimensional
manifold, hereafter an n-manifold, as is any open subset, U ⊂ Rn. If n = 0 then R0 is a point,
unions of points are 0-manifolds.

• Anym-dimensional subspace (or affine plane) of Rn is anm-manifold. Necessarilym ≤ n, m = 1
corresponds to lines, and m = 2 corresponds to planes.

• The circle, S1 = {(x1, x2) ∈ R2 |x21 + x22 = 1} ⊂ R2, is a 1-manifold (explicit coordinates are
given by θ 7→ (cos(θ), sin(θ)) and the sphere, S2 = {(x1, x2, x3) ∈ R3 |x21+x22+x23 = 1} ⊂ R3, is a
2-manifold (coordinates can be given by stereographic projection). More generally, the n-sphere,
Sn = {(x1, . . . , xn) ∈ Rn |

∑n
i=1 x

2
i = 1} ⊂ Rn+1, is an n-manifold.

• The (donut) torus, given by {((2 + cos(θ)) cos(ϕ), (2 + cos(θ)) sin(ϕ), sin(θ)) | θ, ϕ ∈ R} ⊂ R2, is
a 2-manifold. The (standard) torus, T 2 = S1×S1 ⊂ R4, is also a 2-manifold. These two object,
while different as sets, are the ‘same’ manifold in an appropriate sense (they are diffeomorphic).

• The Möbius band, B = {(cos(θ), sin(θ), r cos( θ
2
), r sin( θ

2
) ∈ R4 | r, θ ∈ R} ⊂ R4, is a 2-manifold.

Notice that projection to the first two coordinates gives a copy of the circle, S1, whose preimage
is a straight line. As θ varies over an interval of length 2π this line rotates a half turn (so two
loops round the circle in the projection arrive at the same point).

1.2.2 Examples of abstract manifolds

Not all manifolds sit inside of Euclidean space in a natural way. For example, in physics one thinks of
our universe as a 4-manifold (three dimensions of space and one of time), but we do not seem to exist
as a subset of some bigger ambient space. We now look at examples of abstract manifolds (abstract
in the sense that they do not lie naturally in a copy of Rn):

• Space-time itself as a 4-manifold does not seem to sit inside of some copy of Rn, but is locally
Euclidean.
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• Consider the matrix groups, GL(n,R) and SL(n,R), formed of n×n matrices with non-zero and
unit determinant respectively. These form manifolds of dimension n2 and n2 − 1 respectively.
While these groups can be viewed as subsets of Rn2

(for instance by stacking columns of the
matrices), this perspective does not tell us much, if anything, about their group structure.

• The (Pac-Man) torus, formed by identifying opposite sides of a square (with the same orienta-
tion) is a 2-manifold. This does not sit inside of R3, like the donut torus, without having to
‘bend/twist’ the square.

• The Klein bottle, formed by identifying two sides of a square with the same orientation and
identifying the other two sides with opposite orientation, is a 2-manifold. There is no way to
make this sit in R3 without it self-intersecting.

• The projective space, RP n, is formed by either taking the n-sphere, Sn, and identifying antipodal
points or by identifying colinear points in Rn+1. This is an n-manifold and may be thought of
as the space of lines in Rn+1.

The final three examples of abstract manifolds above are formed as quotient spaces of Euclidean space.
As it turns out, and as we will see later on, every manifold can realised as a subset of Rn but this is
not always a natural way to view them, and may not preserve any additional structres on the manfiold
(such as a notion of distance). We will thus be interested in definitions and concepts that are intrinsic
to the manifold itself, and do not make reference to an ambient space.

1.2.3 Examples that are not manifolds

Let us finally discuss some examples of objects that we want to preclude as manifolds:

• Consider a figure of eight (or just the union of the coordinate axes in R2). While this is a
1-manifold away from the intersection point, at this intersection point there is no way to assign
local coordinates there. Similarly, the cone, C = {(x1, x2, x3) |x21+x22−x23 = 0} is not a manifold.

• Consider the square or cube. while the faces of the shapes locally look like R2, the corners of
the object are not smooth. These are examples of topological but not smooth manifolds (which
we will refer to simply as manifolds in this course).

• Fractal like objects such as the Koch snowflake, Peano space filling curves, and Alexander’s
horned sphere (homeomorphic but not diffeomorphic to the sphere) are locally homeomorphic
to Euclidean space but not smooth in an appropriate sense.

The second and third bullet points above describe objects that are topologically manifolds in the sense
that they locally can be deformed to look like Euclidean space, but this deformation cannot be done
in a smooth manner; and hence they are not (smooth) manifolds.

2 Manifold preliminaries

We want to identify an appropriate mathematical notion that allows us to piece together sets that look
like Euclidean space into a global object. This will be done by first introducing topological spaces,
sometimes referred to ‘rubber sheet geometry’, which posses the desired property of the abstract
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examples described above in that they are not required to sit inside of some ambient space. Once we
have introduced topological spaces, we will then need to make sense of smooth maps for these objects
in analogy with the usual notion in Euclidean space.

2.1 A primer in topology

In Euclidean space, Rn, we declared a set, U ⊂ Rn, to be open if for every point, x ∈ U , there was
some ball around this point that lay inside of the set; precisely if there existed some ε > 0 such that
Bε(x) ⊂ U (where Bε(x) = {y ∈ Rn | |y − x| < ε}). With this notion we were able to characterise
the continuity of functions, f : Rm → Rn, by requiring that the pre-image of any open set was open;
i.e. that f−1(U) = {x ∈ Rn | f(x) ∈ U} was open whenever U ⊂ Rn was open. On the grounds that
any good mathematical notion is worth generalising, let us try to do so.

2.1.1 Topological spaces and some properties

We want to make the idea of open sets and their characterisation of continuity more general.

Definition 1. Let X be a (non-empty) set. A topology, τ , is a collection of subsets of X, called
open sets, such that

• ∅, X ∈ τ ,

• Any union of open sets is an open set,

• Any finite intersection of open sets is an open set.

We then call the pair (X, τ) a topological space.

Remark 1. As in Rn, we call a set, C ⊂ X, closed if C = X \ U for some open set U .

Let’s see some examples:

Example 1. On any (non-empty) set X we can consider the trivial topology by letting τ = {∅, X}.

Example 2. On any (non-empty) set X we can consider the discrete topology by letting τ contain
every subset of X (i.e. declare every subset of X to be open).

Example 3. On any (non-empty) set X we can consider the co-finite topology by defining the open
sets to be ∅, X and sets, U ⊂ X whose complement is finite (i.e. |X \ U | <∞).

Example 4. For a topological space, (X, τ), we can induce the subspace topology on any subset,
S ⊂ X, by declaring a set to open in S if it is the intersection of S with an open set in X.

Example 5. For a topological space, (X, τ), and an equivalence relation, ∼, on X we can define the
quotient space X/∼ consisting of all equivalence classes of X with this relation, which we denote
for x ∈ X by [x] = {y ∈ X |x ∼ y}. We then get a projection map π : X → X/∼ taking a point
x ∈ X to its equivalence class [x] ∈ X/∼. The topology on X induces the quotient topology on
X/∼ by declaring U ⊂ X/∼ open if π−1(U) is open in X.

Example 6. The usual notion of open sets in Rn gives it the standard topology. In this course we
will always consider Rn with the standard topology.
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As the first three examples above show, topological spaces can be fairly weird. Since we want to restrict
our attention to spaces that locally look like Euclidean space, we will consider further restrictions on
our topological spaces.

The first property we consider allows us to separate distinct points by disjoint open sets (ensuring
they are ‘housed off’):

Definition 2. A topological space, (X, τ), is Hausdorff if for any distinct points, x ̸= y, in X there
exist open sets, U, V ∈ τ , with x ∈ U and y ∈ V such that U ∩ V = ∅.

Remark 2. Rn is Hausdorff.

Remark 3. The trivial and co-finite topology on any set are not Hausdorff (in the latter case one can
show that any two open sets have non-empty intersection).

Remark 4. In a Hausdorff topological space, any convergent sequence has a unique limit. By a
convergent sequence here we mean that xn → x in (X, τ) if for any x ∈ U ∈ τ there is some N ≥ 1
such that xn ∈ U for all n ≥ N (i.e. the sequence is eventually inside of every open set containing the
limit point).

The second property we will consider is easier to motivate retrospectively as it will allow for nu-
merous useful constructions on manifolds later on (partitions of unity, Whitney embedding theorem,
Riemannian metrics etc.):

Definition 3. A topological space, (X, τ), is second countable if there is a countable collection of
open sets, {Ui}∞i=1 ⊂ τ , such that any open set can be written as the union of open sets from this
collection; i.e. any U ∈ τ is equal to the (countable) union of some of the sets {Ui}∞i=1. The collection
{Ui}∞i=1 are referred to as a countable base for the topology.

Remark 5. Rn is second countable. As is any subset equipped with the subspace topology. One can
consider balls of rational radii centred at points with rational coordinates.

Remark 6. Second countable spaces are separable (assuming the axiom of choice). Separable means
that the space has a countable dense subset (where dense means that the set intersects every open set).
In metric spaces (e.g. Rn) these notions are equivalent.

Remark 7. A space that is not second countable is given by the ‘long-line’, which is formed by stacking
the half-open interval [0, 1) end-to-end uncountably many times.

The final property we consider is a notion of ‘smallness’ for topological spaces, generalising the notion
of closed and bounded subsets of Euclidean space:

Definition 4. A topological space, (X, τ), is compact if whenever X = ∪i∈IUi for some collection
{Ui}i∈I ⊂ τ (called a cover), there is a finite subcollection of the Ui1 , . . . , UiN ∈ {Ui}i∈I such that
X = Ui1 ∪ · · · ∪ UiN (i.e. every cover of X has a finite subcover).

Remark 8. Closed and bounded subsets of Rn are compact (this is the Heine–Borel theorem).

Remark 9. In a Hausdorff space, every compact set is also closed.

Remark 10. Rn, (0, 1), and [0, 1) are not compact (one should think compact is small, not compact
is big).
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2.1.2 Topological continuity and homeomorphisms

The definition of a topological space generalises the notion of open sets, we now wish to generalise
the notion of continuity to maps between these spaces.

Definition 5. A map f : X → Y between topological spaces is continuous if the pre-image of every
open set is open.

Remark 11. In Rn this agrees with the familiar definition of continuity described above.

Remark 12. Whether a given map f : X → Y is continuous depends on the topology on the spaces X
and Y . For instance, if X is given the discrete topology every function is continuous (as every subset
of X is open)!

We want to understand continuous maps that preserve topological properties (e.g. those introduced
above), for which we need their inverses to also be continuous:

Definition 6. A map f : X → Y is a homeomorphism if it is continuous, bijective, and has
continuous inverse (i.e. f−1 : Y → X is well defined and continuous). If there is a homeomorphism
between X and Y we say that the spaces are homeomorphic.

Remark 13. Homeomorphisms preserve topological structure. For instance, if X and Y are homeo-
morphic then X is Hausdorff/second countable/compact if and only if Y is Hausdorff/second count-
able/compact.

The importance of this definition lies in the fact that it allows us to determine whether two topological
spaces are the ‘same’ if they can be obtained from one another by stretching and bending (e.g. a mug
and a donut). One of the main goals of the field of topology is to determine which topological spaces
are homeomorphic.

We now consider some examples of homeomorphic topological spaces, bearing in mind that topological
properties are preserved by homeomorphisms:

Example 7. The circle and the square are homeomorphic.

Example 8. The interval (0, 1) is homeomorphic to R.

Example 9. Each of the three tori defined previously are homeomorphic.

Example 10. Rn and Rm are homeomorphic if and only if n = m (this is hard to prove).

Example 11. The intervals (0, 1) and [0, 1] are not homeomorphic; one is compact and the other is
not. Similarly, S1 and R are not homeomorphic.

2.1.3 Topological manifolds, charts, atlases, and transition maps

We are now ready to define a topological manifold, with the idea that a manifold should locally look
like Euclidean space near every point:

Definition 7. An n-dimensional topological manifold or topological n-manifold is a Haus-
dorff, second countable topological space for which every point belongs to an open set homeomorphic
to an open subset of Rn.
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Remark 14. By virtue of the fact, mentioned above, that Rn is homeomorphic to Rm if and only if
n = m, the dimension of a manifold is uniquely determined.

We will not discuss topological manifolds in too much detail, since we are interested in manifolds we
can do calculus on, but mention here that every example discussed in the introduction is a topological
manifold; in particular, we note that the examples discussed in Euclidean space are automatically
Hausdorff and second countable.

Since we want to generalise notions from calculus to manifolds, and since we are familiar with these
notions in Euclidean space, we first show that all topological manifolds induce natural maps between
Euclidean spaces. We first observe that, as every point in a topological n-manifold belongs to an open
set homeomorphic to an open subset of Rn, we get a homeomorphism between an open subset of the
manifold and Rn; this notion gives the following definition:

Definition 8. Given a topological n-manifold, M , we call a homeomorphism φ : U → V between open
subsets U ⊂M and V ⊂ Rn a chart on M .

The open sets of the manifold in the definition above are often referred to as coordinate patches. Since
we can take the union over all such open sets as above, we can cover the entire manifold with charts
in the following manner:

Definition 9. A collection of charts, {φα : Uα → Vα}α∈A, is called an atlas for M if M = ∪α∈AUα.

With the above two definitions, one could equivalently define a topological n-manifold to be a Haus-
dorff, second countable topological space that admits an atlas of charts mapping into Rn. The termi-
nology for charts and atlases is made in strong analogy with the manner in which maps of the world
are created; regions of the curved earth are depicted by flat two dimensional images which are pieced
together to give a complete map.

We conclude this topological section by discussing natural maps that are induced by an atlas on
a topological manifold. Whenever two coordinate patches in a given atlas overlap we yield a map
between Euclidean spaces:

Definition 10. Given two charts, φα : Uα → Vα and φβ : Uβ → Vβ, in the atlas of a topological
n-manifold, M , we call the homeomorphism

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

a transition map.

Transition maps are homeomorphisms as they are compositions of homeomorphisms (so one does not
need to check the condition given a transition map). Given an atlas on a topological manifold, the
transition maps tell us how coordinate patches of the manifold relate in regions where they overlap.

2.2 Notions from multivariable calculus

We now recall some background in multivariable calculus to make sense of the differentiability of maps
between Euclidean spaces. These ideas will be generalised to manifolds shortly.

Definition 11. Given an open set U ⊂ Rn we say that a map f : U → Rm is smooth if its derivatives

of all orders exist; i.e. if ∂kfi
∂xk

j
(x) exists for each i = 1, . . . ,m, j = 1, . . . , n, and every k ≥ 1 whenever

x ∈ U . Given a point x ∈ U we call the linear map Dxf : Rn → Rm the derivative of f at x which

is represented by the Jacobian matrix, denoted Jf (x), with entries
(

∂fi
∂xj

(x)
)
ij
.
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Just as a homeomorphism between open sets U, V ⊂ Rn gave a way to continuously deform one set
to the other, if we ask that this deformation is smooth we arrive at the following:

Definition 12. Given open sets U, V ⊂ Rn a map f : U → V is a diffeomorphism if it is smooth,
bijective, and has a smooth inverse (i.e. f−1 : V → U is well defined and smooth). If there is a
diffeomorphism between U and V we say that the sets are diffeomorphic.

As smooth maps are continuous, every diffeomorphism is necessarily a homeomorphism. This defi-
nition captures the idea that we deform one set to the other in a differentiable or smooth manner;
for example any open interval is diffeomorphic to the real line. One effective way to locally construct
diffeomorphisms is provided whenever the derivative of a smooth map is invertible:

Theorem 1. (Euclidean Inverse Function Theorem) If f : Rn → Rn is smooth with Dxf invertible
at some point x ∈ Rn, then there exist open sets U, V ⊂ Rn with x ∈ U such that f : U → V is a
diffeomorphism.

One sometimes refers to the the conclusion of the inverse function theorem as saying that a smooth
map is a local diffeomorphism whenever it has invertible derivative; the use of local here means
that the point at which the derivative is invertible belongs to an open set on which the map is a
diffeomorphism.

2.3 Smooth manifolds

2.3.1 The definition

Since a transition map between charts in the atlas of a topological manifold provides a homeomorphism
between open subsets of Euclidean space, it is natural to ask whether these maps are smooth. This
leads us to the formal definition of a smooth manifold:

Definition 13. An n-dimensional smooth manifold, hereafter an n-manifold, is a topological
n-manifold admitting an atlas with smooth transition maps.

Let’s unpack this definition carefully. We first take a topological n-manifold, M , which is a Hausdorff,
second countable space for which every point belongs to an open set homeomorphic to an open
subset of Rn. The definition then stipulates that there is some atlas, {φα : Uα → Vα}α∈A, of charts,
i.e. homeomorphisms between open sets Uα ⊂ M and Vα ∈ Rn, such that whenever α, β ∈ A the
transition map

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

is smooth as a map between open subsets of Rn. Since the transition maps told us how coordinate
patches of the manifold relate in regions where they overlap, the additional requirement that they
are smooth tells us that the piecing together of coordinate patches is done in a smooth manner; as
opposed to just continuously for a topological manifold.

Remark 15. Since charts are homeomorphisms, and we may swap the role of α and β in the transition
maps, we see that transition maps are smooth, bijective and have smooth inverse. This implies that
the transition maps are in fact diffeomorphisms between the open sets φα(Uα ∩ Uβ) and φβ(Uα ∩ Uβ);
the inverse of φβ ◦ φ−1

α is given by φα ◦ φ−1
β . Observe that the smoothness of a manifold implicitly

depends on the choice of atlas for the manifold; given one choice of atlas however, one can always
define an equivalence class of atlases, called a smooth structure, for which there will exist a uniquely
defined (maximal) atlas. We will not discuss this point too much further here, but simply mention
that differing (non-equivalent) choices of atlases on smooth manifolds give rise to different ways of
differentiating functions, i.e. different smooth structures on a given topological manifold.
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Remark 16. One can define other classes of manifold, each of which has their own corresponding
theory, by replacing the word smooth in the definition of a manifold with the assumption that they
are ‘X’, provided being X is a condition closed under composition and taking inverses. By taking
X = homeomorphic one recovers the definition of a topological manifold. One could also relax the
smoothness assumption to Ck for some finite integer k ≥ 1, bi-Lipschitz, conformal, real analytic, or
complex analytic (if n is even). This last condition gives rise to the notion of a complex manifold.
In this course however we will only consider the class of smooth manifolds.

Let’s check that some of the examples we previously discussed are indeed manifolds:

Example 12. We mentioned that Rn is Hausdorff and second countable. Take the atlas {In : Rn →
Rn} consisting of a single chart given by the identity on Rn; the transition maps are then the identity
also, which is a diffeomorphism. Thus Rn is an n-manifold; indeed the same argument works to show
that any open U ⊂ Rn is also an n-manifold. This immediately shows that GL(n,R) is an n2-manifold
as it arises as an open subset of Rn2

(as the determinant map is continuous).

Example 13. If M is an n-manifold and U ⊂M is open, then U is also an n-manifold by restricting
charts in the atlas ofM to U ; precisely if {φα : Uα → Vα}α∈A is an atlas forM , then {φα|U : Uα∩U →
Vα ∩ φα(U)}α∈A is an atlas for U .

Example 14. We will check that the n-sphere, Sn = {(x1, . . . , xn) ∈ Rn+1 |
∑n

i=1 x
2
i = 1} ⊂ Rn+1 is

an n-manifold. Firsly, we note that Sn ⊂ Rn+1 with the subspace topology is Hausdorff and second
countable. Let us denote the ‘north’ and ‘south’ poles of Sn by the points N = (0, . . . , 0, 1) and
S = (0, . . . , 0,−1) respectively. Define open sets UN = Sn \ {N} and US = Sn \ {S}, so that
Sn = UN ∪ US, and consider the stereographic projection maps, φN/S : UN/S → Rn defined for
x ∈ UN/S by setting

φN/S(x) =
1

1∓ xn+1

(x1, . . . , xn).

These maps are continuous on their domains and have continuous inverses defined for y ∈ Rn by
setting

φ−1
N/S(y) =

1

1 + |y|2
(2y1, . . . , 2yn,±(|y|2 − 1));

hence the maps are homeomorphisms and {φN/S : UN/S → Rn} defines an atlas for Sn; thus it is
a topological n-manifold. Noting that UN ∩ US = Rn \ {0} and φN/S(UN ∩ US) = Rn \ {0} one can
compute that, for y ∈ Rn \ {0}, a transition map is given by

φS ◦ φ−1
N (y) =

y

|y|2
;

which is its own inverse. The transition maps are thus seen to be smooth on φN/S(UN ∩US) = Rn\{0}
and hence Sn is an n-manifold.

Example 15. One can check that if M is an m-manifold and N is an n-manifold, then M × N is
an (m+ n)-manifold. This can be used to show, with the previous example, that the standard n-torus,
T n = S1 × · · · × S1 (product of n circles), is an n-manifold.

2.3.2 Smooth maps and diffeomorphisms

With the formal definition of a manifold now established, we want to start to make sense of notions
from calculus on these objects. The topological properties of a manifold mean that the notion of
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continuity for maps on and between manifolds is clear, but we need to see how to define a notion of
smoothness. Smoothness of the manifold itself was defined by requiring that the transition maps were
smooth, and since these were maps between Euclidean spaces this notion was clear. We can do the
same for a map from a manifold into some Euclidean space as follows:

Definition 14. Given an n-manifold, M , with an atlas {φα : Uα → Vα}α∈A a map f : M → Rm is
smooth if the map

f ◦ φ−1
α : Vα → Rm

is smooth for all α ∈ A.

Remark 17. Since the map f ◦ φ−1
α : Vα → Rm is a map between Euclidiean spaces, the smoothness

of this map is required in the sense defined previously; i.e. if the derivatives of all orders exist at every
point of Vα. By considering f = φα in the definition we see that every chart of an n-manifold is
smooth in the above sense as φα ◦ φ−1

α = In is the identity map (which is smooth). Observe that the
smoothness of a map implicitly depends on the choice of atlas on the manifold; indeed this can be used
to define another equivalence relation between atlases as discussed previously.

We can very quickly generalise this notion to define smooth maps between manifolds:

Definition 15. Given an m-manifold, M , with an atlas {φα : Uα → Vα}α∈A and an n-manifold, N ,
with an atlas {ϕβ : Uβ → Vβ}β∈B a map F :M → N is smooth if the map

ϕβ ◦ F ◦ φ−1
α : φα(Uα ∩ F−1(Uβ)) → Rn

is smooth for all α ∈ A and β ∈ B.

Remark 18. One thing from the two definitions above that is not immediately clear is whether smooth-
ness is preserved on regions where coordinate patches overlap; as we shall now show, ensuring this
condition can be thought of as the reason for asking transition maps to be smooth in the definition
of a manifold in the first place. Consider α, α̃ ∈ A and β, β̃ ∈ B such that both Uα ∩ Uα̃ ̸= ∅ and
Uβ ∩ Uβ̃ ̸= ∅. We then have that

ϕβ̃ ◦ F ◦ φ−1
α̃ = (ϕβ̃ ◦ ϕ

−1
β ) ◦ (ϕβ ◦ F ◦ φ−1

α ) ◦ (φα ◦ φ−1
α̃ ),

from which we see that the left hand side of the above is smooth if and only if the second term on the
right hand side is smooth (since the first and third terms on the right hand side are smooth transition
maps). The moral here is that by requiring transition maps to be smooth, we ensure that smoothness
is preserved when piecing together coordinate patches.

Both of the above definitions recover the notions for smooth maps in Euclidean space immediately
since we can take an atlas consisting of the identity map. We will almost exclusively deal with smooth
maps in this course, but let us check a few examples:

Example 16. The identity map I : M → M on any n-manifold is smooth as, if {φα : Uα → Vα}α∈A
is an atlas on M , we have φα ◦ I ◦ φ−1

α = In the identity on Rn restricted to Vα, which is smooth.

Example 17. If M ⊂ Rn is a manifold (of any dimension ≤ n) then the restriction to M of any
smooth map on Rn is smooth. Similarly, if M ⊂ Rm and N ⊂ Rn and f : Rm → Rn is a smooth map
with f(M) ⊂ N then the restriction of f to M is smooth as a map between manifolds. For example,
consider the Hopf fibration map f : R4 → R3 defined for x ∈ R4 by setting

f(x1, x2, x3, x4) = (x21 + x22 − x23 − x24, 2x1x4 + 2x2x3, 2x2x4 − 2x1x3),

which is smooth. One can check that if x ∈ S3 then f(x) ∈ S2 and thus the restriction of the Hopf
fibration to S3 is a smooth map between S3 and S2.
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Example 18. Given a matrix group, G, which is a manifold, e.g. GL(n,R) (we saw this was a
manifold already), SL(n,R), O(n), SO(n) etc., one can consider the multiplication map m : G ×
G→ G taking a pair (A,B) ∈ G×G to AB ∈ G and the inversion map i : G→ G taking A ∈ G to
A−1 ∈ G; both of these maps are smooth maps (note that the first is a map from the product manifold
G×G to G). The smoothness of the multiplication and inversion map on a group which is a manifold
are what define them as Lie groups. Similarly, the left and right multiplication maps LA : G → G
with LA(B) = AB and RA : G → G with RA(B) = BA, determinant map det : G → R, and trace
map tr : G→ R are also smooth.

With the notion of smoothness established for maps between manifolds, we can now specify whether
two manifolds are the same as we did for subsets of Euclidean space:

Definition 16. Given manifolds M and N a map F :M → N is a diffeomorphism if it is smooth,
bijective, and has smooth inverse (i.e. F−1 : N → M is well defined and smooth). If there is a
diffeomorphism between M and N we say that the manifolds are diffeomorphic.

Again this directly generalises the notion of a diffeomorphism between subsets of Euclidean space.
We note however that the definition there required open sets in Euclidean spaces to be of the same
dimension.

Remark 19. Later on, we will in fact see that if two manifolds are diffeomorphic they necessarily
have the same dimension; this can be checked for Euclidean spaces by using the chain rule and some
linear algebra. The fact that open subsets of Euclidean space that were homeomorphic necessarily had
to be of the same dimension implied that topological manifolds had uniquely defined dimension. One
can replace homeomorphic by diffeomorphic in the previous sentence to show that a uniquely defined
dimension holds for smooth manifolds in a simpler way.

Let’s look at some examples of diffeomorphic manifolds:

Example 19. As we saw, charts for an manifold are smooth. Given an n-manifold, M , if {φα :
Uα → Vα}α∈A is an atlas on M then we have φα ◦ φα ◦ In = In the identity on Rn restricted to Vα,
which is smooth. We thus see that for each α ∈ A that each chart, φα : Uα → Vα is a diffeomorphism
and so the manifolds Uα and Vα are diffeomorphic. This justifies the idea that manifolds locally ‘look
like’ Euclidean space, in the sense that they are the ‘same’ as manifolds in each coordinate patch.

Example 20. The identity map IM :M →M is a diffeomorphism as it is its own inverse.

Example 21. As a linear map on Rn corresponds to a smooth map in the usual sense for Euclidean
space, this is a diffeomorphism if and only if it is invertible as a linear map. This corresponds to the
matrix representation for the linear map being invertible, and thus the linear diffeomorphisms of Rn

are given by the group GL(n,R).

Example 22. The open interval (0, 1) is diffeomorphic to R (as is any open interval).

Example 23. All of the tori we defined previously can be shown to be diffeomorphic.

Example 24. If F and G are diffeomorphisms from a manifold, M , to itself then so is F ◦ G and
F−1. The diffeomorphisms of a manifold thus form a group, which we will denote by Diff(M).
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2.3.3 Comparing smooth and topological manifolds

With the notion of diffeomorphism in hand, one can now ask how the theories of topological and
smooth manifolds are related. We now discuss this briefly, but it can be safely ignored for all intents
and purposes.

For dimensions n ≤ 3 the theory is identical: every topological n-manifold admits an atlas with smooth
transition maps and thus can be made into a smooth n-manifold. Additionally, if two topological
n-manifolds are homeomorphic then they are necessarily diffeomorphic; thus any two atlases are
equivalent and define the same smooth functions (see [Vir13] for n = 1, [Hat22] for n = 2, and
[Mun60, Theorem 6.3] for n = 3).

In dimensions n ≥ 4 however the situation is drastically different: there exist topological 4-manifolds
that do not admit any atlas with smooth transition maps, and thus cannot be made into a smooth
4-manifold (see [Fre82]). There are also pairs of smooth n-manifolds which are homeomorphic but
not diffeomorphic; showing that the atlases on each are not equivalent in the sense that they define
different smooth structures. Historically speaking, it was first shown that there are 28 distinct smooth
structures on the 7-sphere (see [Mil56, KM63]). It was also shown that there exists a smooth structure
on R4 that is not diffeomorphic to the standard one (see [Don83]); this is not true in any other
dimension, where the standard smooth structure on Rn for n ̸= 4 is unique (see [Sta62]). Non-
standard smooth structures are often referred to as exotic structures. This is still an active area of
research; for instance, it seems to be an open problem to determine whether the 4-sphere admits an
exotic structure (referred to as the smooth 4-dimensional Poincaré conjecture).

2.3.4 Manifolds as quotient spaces

As an application of the notion of diffeomorphisms we just introduced, we can now generate a wide
range of examples of manifolds using quotient constructions.

Let us first make a couple of definitions:

Definition 17. A group, G, acts on a manifold M by diffeomorphisms if for each g ∈ G there
is a diffeomorphism Fg ∈ Diff(M) such that:

• Fe = IM (i.e. the identity of G corresponds to the identity on M).

• Fg◦h = Fg ◦ Fh for each g, h ∈ G.

We will use group actions in order to construct manifolds, but need to impose two further restrictions
on these actions to ensure the constructions work:

Definition 18. A group is said to be discrete if it has at most countably many elements.

Definition 19. A discrete group, G, that acts on a manifold M by diffeomorphisms is said to act
freely and properly discontinuously if both

• Each x ∈M belongs to an open set U ⊂M with Fg(U) ∩ U = ∅ for each g ∈ G \ {e}.

• For any x, y ∈ M where x ̸= Fg(y) for any g ∈ G there are open sets U, V ⊂ M with x ∈ U ,
y ∈ V , and such that U ∩ Fg(V ) = ∅ for all g ∈ G.
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The first property says that the action has no fixed points, and the second says that if no diffeomor-
phism takes y to x then the same is true for open sets containing y and x. With these definitions in
hand we have the following effective way to construct manifolds as quotient spaces:

Theorem 2. (Quotient manifold theorem) LetM be an n-manifold and G be a discrete group that acts
on M by diffeomorphisms freely and properly discontinuously. Define an equivalence relation, ∼, on
M by setting x ∼ y if and only if x = Fg(y) for some g ∈ G. Then, the quotient space M/∼ = M/G
is an n-manifold.

Proof. (not covered in lectures) We first check that the quotient topology induced on M/∼ is both
Hausdorff and second countable. To show this we will first establish that the projection π :M →M/∼
is an open map (i.e. takes open sets to open sets). Consider an open set U ⊂ M , we then observe
that, by the definition of the equivalence relation, π−1(π(U)) = ∪g∈GFg(U). Since U is open and
diffeomorphisms are homeomorphisms, each of the sets Fg(U) are open and thus π−1(π(U)) is open
as the union of open sets. By the definition of the quotient topology this means that π(U) is open in
M/∼ and thus π is an open map.

Consider two distinct point x, y ∈ M/∼, by the definition of the equivalence relation this implies
that x ̸= Fg(y) for all g ∈ G (else we would have x ∼ y). As G acts by diffeomorphisms freely and
properly discontinuously (in particular by the second condition in the definition), there are thus open
sets U, V ⊂ M such that U ∩ Fg(V ) = ∅ for all g ∈ G. It thus follows that π(U) ∩ π(V ) = ∅ and as
pi is an open map, both π(U) and π(V ) are disjoint open sets containing x and y respectively; thus
M/∼ is Hausdorff.

AsM is second countable, let {Ui}∞i=1 ⊂M be a countable base for the topology onM . As π is an open
map, we can then define a countable base, {π(Ui)}∞i=1, for M/∼, showing that it is second countable.
The fact that this collection is a countable base follows by taking an open U ⊂M/∼, giving an open
set π−1(U) ⊂ M which we then write as a union of the original base, and then projecting this set to
M/∼.

Let {φα : Uα → Vα}α∈A denote the atlas for M . By the assumption that G acts freely and properly
discontinuously, by potentially replacing the Uα, without loss of generality we may assume that each
of the open sets Uα ⊂M is such that Uα∩Fg(Uα) = ∅ for all g ∈ G\{e}. Since M = ∪α∈AUα we then
have thatM/∼ = ∪α∈Aπ(Uα), where each of the π(Uα) are open as π is an open map. We then ensure
that the restriction of π to each Uα, which we denote by πα : Uα → π(Uα), is a homeomorphism;
the injectivity follows as Uα ∩ Fg(Uα) = ∅ for all g ∈ G \ {e} and its inverse is continuous as π is
open. We can then define charts, ϕα = φα ◦ π−1

α : π(Uα) → Vα ⊂ Rn (which are homeomorphisms as a
composition of homeomorphisms), and thus an atlas for M/∼ is given by {ϕα : π(Uα) → Vα}α∈A; this
shows that M/∼ is a topological n-manifold, it remains to prove that this atlas has smooth transition
maps.

If π(Uα) ∩ π(Uβ) ̸= ∅ for some α, β ∈ A then we need to check that the map ϕβ ◦ ϕ−1
α is smooth. As

G acts by diffeomorphisms freely and properly discontinuously (in particular by the first condition in
the definition), given a point x ∈ ϕα(π(Uα) ∩ π(Uβ)) we see that p ∈ φα(Uα ∩ Fg(Uβ)) for a unique
choice of g ∈ G. By definition of the charts we have that

ϕβ ◦ ϕ−1
α = φβ ◦ π−1

β ◦ πα ◦ φ−1
α

and thus, by restricting to ϕα(Uα ∩ Fg(Uβ)), it is enough to check that π−1
β ◦ πα is smooth on the

set Uα ∩ Fg(Uβ) (as the transition maps for M are smooth). Now if y ∈ Uα ∩ Fg(Uβ) then we have
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ỹ = π−1
β ◦ πα(y) ∈ Uβ and thus πβ(ỹ) = πα(y). By the definition of the equivalence relation this

ensures that there is some h ∈ G such that Fh(ỹ) = y. Since y ∈ Uα ∩Fg(Uβ) and ỹ ∈ Uβ this implies
that y ∈ Fh(Uβ) ∩ Fg(Uβ), but by the choice of atlas on M this ensures that g = h. We then note
that as y = Fg(ỹ) = Fg ◦ (π−1

β ◦ πα)(y) we must have that π−1
β ◦ πα = F−1

g on the set Uα ∩ Fg(Uβ),

which is smooth as it is a diffeomorphism. Thus we conclude that π−1
β ◦ πα is smooth on Uα ∩ Fg(Uβ)

and so the transition map ϕ−1
β ◦ ϕα is smooth as a composition of smooth maps; hence M/∼ is an

n-manifold.

Remark 20. One can in fact define manifolds as quotient spaces more generally by considering Lie
groups that act by diffeomorphisms freely and properly discontinuously (see [Lee12, Chapter 21]).

We now put this theorem to use to produce a variety of examples of manifolds:

Example 25. The group of two elements Z2 = {−1, 1} acts on Rn by diffeomorphisms F−1 = −In and
F1 = In (the identity on Rn); but does not act freely and properly discontinuously as 0 ∈ Rn is fixed.
One can check however that it does act freely and properly discontinuously on Rn \ {0}, and indeed
any manifold M ⊂ Rn \ {0} such that −M =M . This allows us to show that RP n, the Möbius band,
and the Klein bottle are manifolds (applying the above theorem to appropriate manifolds in Rn \ {0}).

Example 26. By considering the n-dimensional hyperbolic space, Hn = {x ∈ Rn |xn > 0} (which
is an n-manifold as it is an open subset of Rn) and taking quotients by group actions one can define
various hyperbolic manifolds.

Example 27. The group Z acts on R by diffeomorphisms freely and discontinuously for each n ∈ Z
by setting Fn(x) = x+n for x ∈ R; we then have that R/Z is diffeomorphic to the circle. Analogously,
Zn acts on Rn and Rn/Zn is diffeomorphic to the n-torus or a product of n circles.

Example 28. The group Z acting on R2 by diffeomorphisms freely and discontinuously for each n ∈ Z
by setting Fn(x, y) = (x+n, y) for (x, y) ∈ R2; we then have that R2/Z is diffeomorphic to a cylinder.

Example 29. The group Z acting on R2 by diffeomorphisms freely and discontinuously for each n ∈ Z
by setting Fn(x, y) = (x + n, (−1)ny) for (x, y) ∈ R2; we then have that R2/Z is diffeomorphic to a
Möbius band.

Example 30. The quotient constructions producing the Pac-Man torus and the Klein bottle discussed
previously can also be realised in the same manner as quotients of R2.

We have now shown that (aside from SL(n,R) which we will address after building some more tools)
every example discussed in the introduction is indeed a manifold.

2.4 Partitions of unity and the abundance of smooth functions

Before starting to make sense of what the derivative of a smooth function on a manifold really is, we
first introduce some immensely useful analytic tools that we will exploit often throughout the course.
For instance, as an immediate application of these tools we are able to easily construct a variety of
smooth functions on any given manifold. For us, the most important class of smooth functions defined
on manifolds will be those taking real values; we make some definitions:

Definition 20. Given a manifold, M , we let C∞(M) = {f : M → R | f is smooth} denote the
set of smooth real valued functions. We define the support, supp(f), of f ∈ C∞(M) to be the set
{x ∈M | f(x) ̸= 0} (i.e. the points where f does not vanish and the limits of such points).
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One immediate way to define a smooth function on a manifold is to use functions defined on Euclidean
space and pull it back onto the manifold using charts. Precisely, if {φα : Uα → Vα}α∈A is an atlas for a
manifoldM then given any smooth function f : Vα → R for some α ∈ A we see that f ◦φα ∈ C∞(Uα).
One problem with this construction is that this function is only defined on a coordinate patch and it
is unclear, unless supp(f ◦ φα) ⊂ Uα, how to extend this to one defined on all of the manifold. To do
this we first define a helpful function on Euclidean space:

Lemma 1. (Euclidean bump function) There is a smooth function η ∈ C∞(Rn) taking values in [0, 1]
such that η(x) = 1 for |x| ≤ 1 and supp(η(x)) ⊂ B2(0).

Proof. Let us define a function f ∈ C∞(R) by setting

f(t) =

{
e−

1
t if t > 0,

0 if t ≤ 0,

which one can directly verify is smooth, but not real analytic, at 0. We then use this to define a
one-dimensional bump function g ∈ C∞(R) taking values in [0, 1] by setting

g(t) =
f(t)

f(t) + f(1− t)
,

which is such that g(t) = 1 if t > 1 and g(t) = 0 if t < 0. Finally, we define the Euclidean bump
function η ∈ C∞(Rn) by setting η(x) = g(2− |x|); which has the desired properties.

We can use this function to localise near a point on a manifold as follows:

Corollary 1. (Bump function at a point) Let M be a manifold, U ⊂ M an open set, and x ∈ U .

There is a function ηx ∈ C∞(M) taking values in [0, 1] such that ηx(y) = 1 for y ∈ Ũ where Ũ ⊂ U is
an open set containing x and supp(ηx) ⊂ U .

Proof. Let φα : Uα → Vα be a chart in the atlas for M with x ∈ Uα. Set y = φα(x) and consider the
open set (φα − y)(U ∩ Uα) which contains an open ball Bε(0) for some ε > 0. We can consider the
open set 2

ε
(φα − y)(U ∩Uα) which contains B2(0) and define the bump function at a point on U ∩Uα

by setting

ηx = η ◦
(
2

ε
(φα − y)

)
,

extended to be identically equal to zero on M \ (U ∩ Uα); which then has the desired properties.

We call the above the bump function at a point to emphasise that it depends on the point chosen in
the manifold. Using this bump function at a point we are able to extend smooth functions defined on
open sets, to ones that are defined on the whole manifold and agree with the original function at a
point:

Corollary 2. (Extending functions at a point) Let M be a manifold, U ⊂M an open set, f ∈ C∞(U),

and x ∈ U . There is an open set Ũx ⊂ U containing x and a smooth function f̃x ∈ C∞(M) that agrees

with f on Ũx (so in particular f̃x(x) = f(x)) and supp(f̃x) ⊂ U .

Proof. By considering ηx as in the previous corollary we can simply consider the function f̃x = ηx · f
on U which agrees with f on the open set Ũx and is identically zero on M \ U ; which has the desired
properties.
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Applying this latter corollary to the functions f ◦φα ∈ C∞(Uα) discussed before, we produce a globally
defined function onM ; thus we see that there is an abundance of smooth functions on a given manifold
(as we can pull back arbitrary smooth real value functions on Euclidean space by charts). The issue
with the latter corollary however is that we cannot control the domain on which we extend the function
to; in particular, we would like to extend smooth functions in such a way that they agree on prescribed
subsets of the manifold. To do this we will need a way to piece together functions defined on each
coordinate patch, for which we introduce the following indispensable tool:

Definition 21. Let {Uα}α∈A be a cover of a manifold M (e.g. the domains of charts in the atlas). A
partition of unity subordinate to {Uα}α∈A is a collection of functions, {ρα} ⊂ C∞(M), taking
values in [0, 1] such that:

• supp(ρα) ⊂ Uα for every α ∈ A.

• {supp(ρα)}α∈A is locally finite (i.e each point of M belongs to an open set intersecting only
finitely many sets in the collection).

•
∑

α∈A ρα(x) = 1 for every x ∈M .

Remark 21. We observe that if {Uα}α∈A and {Uβ}β∈B are covers of a manifold with partitions of
unity subordinate to the covers given by {ρα}α∈A and {ρβ}β∈B respectively, then {Uα∩Uβ}α∈A,β∈B is a
cover of M with a subordinate partition of unity given by {ραρβ}α∈A,β∈B; this fact will be useful later
when defining integration on manifolds.

The requirement that the collection {supp(ρα)}α∈A is locally finite in the definition ensures that the
sum

∑
α∈A ρα(x) is well defined at each point x ∈ M (as only finitely many terms will be non-zero).

We have the following general existence result:

Theorem 3. (Existence of partitions of unity) There exists a partition of unity subordinate to any
cover of a manifold.

In order to show the existence of partitions of unity subordinate to a given cover we will need to
introduce some other notions from topology; all of which will hold for manifolds. Let us postpone this
for now and discuss an immediate application to strengthen our two previous corollaries for bump
functions and extensions:

Corollary 3. (Bump function on a set) Let M be a manifold, A ⊂ M a closed set, and U ⊂ M an
open set containing A. There is a function, ηA ∈ C∞(M) taking values in [0, 1] such that ηA(x) = 1
for x ∈ A and supp(ηA) ⊂ U .

Proof. Consider the cover ofM by the open sets {U,M \A} and let {ρU , ρM\A} be a partition of unity
subordinate to this cover. As ρM\A is identically zero on A we must have that ρU identically equal to
1 on A; setting ηA = ρU gives the desired function.

This now means that we can localise to any prescribed closed set on our manifold. To introduce
general extensions we extend our definitions slightly and say that given an arbitrary set A ⊂M that
a function f : A → R is smooth if each point in x ∈ A belongs to an open set, Ũx ⊂ M , and there
is a smooth function f̃x : Ũx → R that agrees with f on Ũx ∩ A; we then say that f ∈ C∞(A). The
next result allows us to extend functions to the entire manifold so that they agree with the original
function on any prescribed closed set:
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Corollary 4. (Extending functions on a set) Let M be a manifold, A ⊂ M a closed set, and f ∈
C∞(A). For any open set U ⊂ M containing A there is a function f̃A ∈ C∞(M) that agrees with f

on A and such that supp(f̃A) ⊂ U .

Proof. As f ∈ C∞(A), for each x ∈ A we guarantee the existence of a function f̃x ∈ C∞(M) that

agrees with f on an open set Ũx ⊂M containing x. Potentially replacing Ũx by Ũx∩U we may assume
without loss of generality that Ũx ⊂ U . We then have a cover ofM by the open sets {Ũx}x∈A∪{M \A},
and let {ρx}x∈A ∪ {ρM\A} be a partition of unity subordinate to this cover. For each x ∈ A we have

functions ρx · f̃x ∈ C∞(M) by extending them to be identically zero outside of Ũx (as supp(ρx) ⊂ Ũx),

and then define f̃A =
∑

x∈A ρx ·f̃x. As {supp(ρx)}x∈A is locally finite, this sum is well defined with non-

zero terms at each point x ∈M . As ρM\A(x) = 0 if x ∈ A and f̃x(y) = f(y) for each y ∈ supp(ρx) ⊂ Ũx

we thus have that f̃A agrees with f on A (as
∑

x∈A ρx(y) = 1 for y ∈ A). Finally, as

supp(f̃A) = ∪x∈Asupp(ρx) = ∪x∈Asupp(ρx) ⊂ ∪x∈AŨx ⊂ U,

where the second inequality follows from local finiteness, we have the extension as desired.

These two consequences of the existence of partitions of unity will be incredibly useful later on. Some
other consequences which we will see in this course include the Whitney embedding theorem, the
existence of Riemannian metrics, and defining integration on manifolds.

(The rest of this section was not covered in lectures) We now introduce the necessary notions from
topology that will allow us to prove the existence of partitions of unity subordinate to any cover of a
manifold:

Definition 22. We say that a cover {Ũj}j∈J̃ of a topological space is a refinement of another cover

{Ui}i∈I of the topological space if for each j ∈ J there is an i ∈ I such that Ũj ⊂ Ui. We say that a
topological space is paracompact if every cover has a locally finite refinement.

As any subcover of a given cover provides a refinement, any compact topological space is thus para-
compact (as every cover has a finite, hence locally finite, subcover). We have the following equivalent
definitions of a topological manifold:

Theorem 4. (Equivalence of second countable and paracompact assumption) In the definition of a
topological manifold it is equivalent to replace the second countable assumption with the assumption
that it is paracompact with countably many connected components.

Remark 22. The proof of the above theorem will in fact also show that it is equivalent to assume
the existence of compact exhaustions or a countable cover by compact sets. We will also see that if
we have a cover and a base (not necessarily countable) for a manifold, then there exists a countable,
locally finite refinement of the cover consisting of elements of this base; this fact will be used in the
proof of the existence of partitions of unity.

Remark 23. One can in fact also show that in any topological space in which single points are
closed (sometimes called a T1 space) being paracompact and Hausdorff is equivalent to the existence
of partitions of unity subordinate to any cover.

Proof. See [Tan14].
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If you are not concerned with the topological assumptions needed to define a manifold you can just
replace the second countable assumption with paracompact (or separable, or existence of compact
exhaustions, or covered by compact sets, or T1 and existence of partitions of unity subordinate to
any cover, or ...) in their definition without further concern. The main point here is that knowing
that manifolds are paracompact allows us to select covers that are favourable and the existence of
partitions of unity is crucial for going from local constructions to global constructions. With the above
established, we can now prove the general existence result for partitions of unity:

Proof of the existence of partitions of unity. We first observe that if we have a collection of non-
negative functions {ρα}α∈A ⊂ C∞(M) with

∑
α∈A ρα(x) > 0 at every x ∈M we can then renormalise

and consider instead the functions
{

ρα∑
α∈A ρα(x)

}
α∈A

⊂ C∞(M) so that the sum over α ∈ A is equal

to one at every point.

Let {Uα}α∈A be a cover for a manifold M . As each Uα ⊂ M is an open set for each α ∈ A, Uα is a
manifold and so (by the second countable assumption) we can choose a countable base, Bα = {Bα

i }∞i=1,
for Uα with the property that each Bα

i ∈ Bα is the pre-image under a chart of a ball in Euclidean
space with rational radius and centre. We then obtain a base (not necessarily countable) for M given
by B = ∪α∈ABα, which by the paracompactness of M has a countable, locally finite refinement given
by some cover {Bi}∞i=1 ⊂ B (see the remark following the equivalence theorem). Since the {Bi}∞i=1

are locally finite we see that their closures {Bi}∞i=1 are also locally finite (by considering limit points).
Note also that the cover {Bi}∞i=1 is then a refinement of the original cover {Uα}α∈A.

For each integer i ≥ 1, as Bi is the pre-image of the restriction some coordinate chart, which we will
denote by φi, by stretching and translating φi(Bi) (as in the construction of the bump function at a
point) we may assume without loss of generality that φi(Bi) = B2(0). We then define non-negative
ρi ∈ C∞(M) for each integer i ≥ 1 by setting ρi = η ◦ φi on every open set containing Bi (one can
for instance choose the pre-image under a chart of a slightly bigger ball in Euclidean space) and ρi
identically zero on M \ Bi; where here η ∈ C∞(R) is the Euclidean bump function. Note that in
particular supp(ρi) = Bi, and hence {supp(ρi)}∞i=1 = {Bi}∞i=2 is locally finite as above. This means
that the sum

∑∞
i=1 ρi(x) is well defined at each point x ∈ M (as only finitely many terms are non-

zero), and strictly positive at each point as the {Bi}∞i=1 are a cover of M and ρi(x) > 0 if x ∈ Bi.
By renormalising as described above, so that now

∑∞
i=1 ρi(x) = 1, all that remains is to re-index the

functions {ρi}∞i=1 in terms of our cover A in order to complete the construction.

As the cover {Bi}∞i=1 is a refinement of the original cover {Uα}α∈A, for each integer i ≥ 1 we can
choose an α(i) ∈ A such that Bi ⊂ Uα(i). We then define ρα ∈ C∞(M) by setting ρα =

∑
{i |α(i)=α} ρi

(where we choose the zero function for ρα if no there are no i with α(i) = α). We then have that∑
α∈A ρα =

∑∞
i=1 ρi = 1 (after renormalising above), {supp(ρα)}α∈A is locally finite, and moreover

supp(ρα) = ∪{i |α(i)=α}Bi = ∪{i |α(i)=α}Bi ⊂ Uα;

where the second equality above follows since ∪{i |α(i)=α}Bi is closed by the local finiteness of the
{Bi}∞i=1. This completes the construction with {ρα}α∈A as the desired functions.

3 Tangents to manifolds

We have defined smooth functions on and between manifolds, but it is still not clear what the derivative
of such a map should be. In order to make sense of the derivative we will first study tangent vectors to
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a manifold, a generalisation of the notion of a tangent line or plane to a curve or surface in Euclidean
space which does not rely on the manifold sitting inside of an ambient space.

3.1 Tangent vectors and the differential of a map

In a first calculus course the derivative of a function of one variable has the geometric interpretation
of being the slope of a tangent line to a curve (i.e. a line that touches but not cross the curve nearby
the point of interest), with this curve acting as a linear approximation of the object. Similarly, for
multivariable functions the derivative is a linear map whose image provides a linear approximation of
the graph of the function at each point; which we call the tangent plane. Geometrically, this idea still
makes sense if even if we do not require a surface to be the graph of some function; for instance the
tangent plane to a point x ∈ S2 ⊂ R3 on the sphere consists of all of the vectors perpendicular to x.
In general, the tangent plane represents a vector space of the same dimension as the surface, which
we often think of as being ‘attached’ to the surface at the point where we took the derivative.

In order to generalise this to manifolds, which are not required to sit in some ambient space, we want
to associate to each point in the manifold a vector space (which we will call the tangent space) which
should act as a linear approximation of the manifold at this point. The derivative at a point of a map
between manifolds should then be a linear map between these tangent spaces; i.e. the derivative at a
point should be a linear map between vector spaces which approximate the manifolds. In order to do
this we will first need to shift our perspective.

Let us hereafter consider denote by I = (−ε, ε) ⊂ R (for some small ε > 0) any interval containing
the origin. Consider again a point x ∈ S2 ⊂ R3 and a smooth curve γ : I → S2 (i.e. a smooth curve
whose image lies in S2) with γ(0) = x. The derivative of the curve at 0, γ′(0), will then be a vector
perpendicular to x; in other words γ′(0) lies in the tangent plane to S2 at x; varying over all possible
choices of γ, we recover the entire tangent plane. We can thus think of the tangent plane to a surface
at a point as being defined by the collection of all smooth curves in the surface that pass through that
point.

For a general manifold, M , and a smooth curve γ : I →M it is unclear how to take its derivative, but
by composing this with a function f ∈ C∞(M) we get a smooth function of one variable, f◦γ ∈ C∞(I),
which we can differentiate; i.e. we can consider (f ◦ γ)′(0)! This gives us a new perspective on the
tangent space, namely instead of thinking of curves as defining tangent vectors we think of curves as
giving us a way to differentiate functions.

Remark 24. In Euclidean space this idea recovers the directional derivative: given x, v ∈ Rn we can
consider the smooth curve γ(t) = x + tv which is such that γ(0) = x and γ′(0) = v, so that for each
f ∈ C∞(Rn) we have

(f ◦ γ)′(0) = d

dt

∣∣∣∣
t=0

f(x+ tv) = v · Jf (x) =
n∑

i=1

vi ·
∂f

∂xi
(x).

Given a point x ∈M in a manifold and a smooth curve γ : I →M with γ(0) = x ∈M , we define the
linear functional Dγ : C∞(M) → R by setting Dγ(f) = (f ◦ γ)′(0) for each f ∈ C∞(M); the fact that
this map is linear follows by linearity of the derivative for one variable functions. We observe that
this linear map also inherits the product rule in the sense that given f, g ∈ C∞(M) we have

Dγ(fg) = (fg ◦ γ)′(0) = ((f ◦ γ)(g ◦ γ))′(0) = g(x)Dγ(f) + f(x)Dγ(g).
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For x ∈ S2 ⊂ R3 and a smooth curve γ : I → S2 with γ(0) = x we have Dγ(I3) = (I3 ◦ γ)′(0) = γ′(0).
Let us turn this change in perspective into a formal definition:

Definition 23. Let x ∈ M be a point in a manifold. The tangent space to M at x, denoted TxM ,
is the collection of all tangent vectors, which we define as linear functionals D : C∞(M) → R with
the property that

D(fg) = g(x)D(f) + f(x)D(g)

for each f, g ∈ C∞(M).

One can check directly that the tangent space is indeed a vector space; though it is not yet clear
whether this is finite dimensional or whether it shares the same dimension as the manifold itself!
Sometimes the space of tangent vectors are referred to as derivations, and the product rule as the
Liebniz rule.

Tangent vectors are now thought of as ways to differentiate functions, which the following lemma
helps solidify:

Lemma 2. (Properties of tangent vectors) Let x ∈ M be a point in a manifold, f, g ∈ C∞(M), and
D ∈ TxM . Then we have the following:

1. If f is constant then D(f) = 0.

2. If f(x) = g(x) = 0 then D(fg) = 0.

3. If f = g in an open set containing x then D(f) = D(g).

Proof. For the first property we observe that

D(1) = D(1 · 1) = 2 ·D(1)

and so D(1) = 0; the result then follows by linearity of D.

For the second property we compute directly that

D(fg) = g(x)D(f) + f(x)D(g) = 0.

For the third property we consider h = f − g ∈ C∞(M) which is identically zero on an open set
containing x, which we call U . Let η be a bump function identically equal to 1 on supp(h) with
supp(η) ⊂ M \ {x} so that η · h = h on M and η(x) = 0. By the second propertyof this lemma just
proved we have

D(f − g) = D(h) = D(η · h) = 0,

and thus by linearity of D we have D(f) = D(g).

This lemma is telling us that tangent vectors do indeed behave like derivatives of functions, and
importantly that they only are determined locally in the sense that they depend on an arbitrarily
small neighbourhood of any point. We now would like to check that the tangent space we have,
somewhat abstractly, defined indeed makes sense for Euclidean space which is linear, so its tangent
space should be itself!
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Proposition 1. (Euclidean tangent space) Given x ∈ Rn the tangent space TxRn is isomorphic to Rn

via the map taking v ∈ Rn to the derivation Dγ ∈ TxRn associated to the curve γ(t) = x+tv. Moreover,
a basis for TxRn is { ∂

∂xi

∣∣
x
}ni=1 ⊂ TxRn which are defined for each i = 1, . . . , n and f ∈ C∞(M) by

∂
∂xi

∣∣
x
(f) = ∂f

∂xi
(x).

Proof. Given v ∈ Rn we saw that the associated derivation, Dγ, acts on f ∈ C∞(Rn) by

Dγ(f) =
n∑

i=1

vi ·
∂f

∂xi
(x).

The linearity of the map taking v ∈ Rn to Dγ is then immediate.

To prove injectivity we suppose that v ∈ Rn is such that Dγ(f) = 0 for all f ∈ C∞(Rn). Consider
the smooth coordinate functions xj : Rn → R for each j = 1, . . . , n defined by xj(w) = wj for each
w ∈ Rn. We then have for each j = 1, . . . , n that

0 = Dγ(x
j) =

n∑
i=1

vi ·
∂xj

∂xi
= vj;

as ∂xj

∂xi
= δij (equal to one if i = j and zero otherwise). We thus conclude that v = 0 and so the map

is injective.

To prove surjectivity, for each D ∈ TxRn and j = 1, . . . , n we consider D(xj) = vj for the smooth
coordinate functions as above and set v =

∑n
i=1 viei; where {ei}ni=1 is the standard basis for Rn. We

now show that D = Dγ for the curve γ(t) = x+ tv. For each f ∈ C∞(Rn we have by Taylor’s theorem
that

f(y) = f(x) +
n∑

i=1

(yi − xi) ·
∂f

∂xi
(x) +

n∑
i,j=1

(yi − xi) · (yj − xj) ·
∫ 1

0

∂2f

∂xi∂xj
(x+ t(y − x)) dt.

We now note that since f(x) is a constant and both (yi − xi) and (yj − xj) are smooth functions
(viewing yi = xi(y) and yj = xj(y)) that vanish at x, which by the lemma on the properties of tangent
vectors we have that the first and third terms above are zero under the action of D and thus

D(f) =
n∑

i=1

D(xj − xi) ·
∂f

∂xi
(x) =

n∑
i=1

vi ·
∂f

∂xi
= Dγ(f),

by construction of v; thus the map is surjective and we are done.

Having defined tangent spaces for manifolds, our definition of the derivative of a map between mani-
folds at a point is essentially determined by asking it to be linear between the tangent spaces:

Definition 24. Given a smooth map F : M → N between manifolds we define for x ∈ M the
differential of F at the point x, denoted by

dxF : TxM → TF (x)N,

to be the linear map given by setting

(dxF (D))(g) = D(g ◦ F )

for each D ∈ TxM and g ∈ C∞(N).
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One can check that the differential is indeed well defined and linear by its definition. Sometimes the
differential is referred to as a pushforward map as it ‘pushes’ tangent vectors from one manifold onto
another. Let’s establish some properties:

Lemma 3. (Properties of the differential) Let F : M → N and G : N → P be smooth maps between
manifolds and x ∈M . Then we have the following:

1. The chain rule holds, i.e. dx(G ◦ F ) = dF (x)G ◦ dxF : TxM → TG(F (x))P .

2. dxIM = ITxM : TxM → TxM .

3. If F is a diffeomorphism dxF : TxM → TF (x)N is an isomorphism and (dxF )
−1 = dF (x)(F

−1).

4. If U ⊂ M is an open set containing x and ι : U → M is the smooth inclusion map then
dxι : TxU → TxM is an isomorphism.

Proof. For the first property we note that for each D ∈ TxM and h ∈ C∞(P ) we have

dx(G ◦ F )(D)(h) = D(h ◦G ◦ F ) = dxF (D)(h ◦G) = dF (x)G(dxF (D))(h),

and so dx(G ◦ F ) = dF (x)G ◦ dxF as desired.

For the second property we note that for each D ∈ TxM and f ∈ C∞(M) we have

dxIM(D)(f) = D(f ◦ IM) = D(f) = ITxM(D)(f),

and so dxIM = ITxM as desired.

For the third property we note that both F−1 ◦ F = IM and F ◦ F−1 = IN and so by combining the
first and second property proved above we have that both

ITxM = dx(F
−1 ◦ F ) = dF (x)(F

−1) ◦ dxF

and
ITF (x)N = dF (x)(F ◦ F−1) = dxF ◦ dF (x)(F

−1).

We thus see that dxF is linear and invertible, with inverse (dxF )
−1 = dF (x)(F

−1) as desired.

For the fourth property we first suppose that D ∈ TxU is such that dxι(D) = 0 ∈ TxM to show

injectivity. Let f ∈ C∞(U) and consider any smooth extension, f̃ ∈ C∞(M), of f that agrees with f

on an open set in U containing x. As f and f̃ agree at x, by the lemma on the properties of tangent
vectors we have that

D(f) = D(f̃
∣∣
U
) = D(f̃ ◦ ι) = dxι(D)(f̃) = 0,

by assumption. As f was arbitrary we thus have that D = 0 ∈ TxU , thus dxι is injective. For
surjectivity we let D̃ ∈ TxM and define D ∈ TxU on f ∈ C∞(U) by setting D(f) = D̃(f̃) where

f̃ is any extension, f̃ ∈ C∞(M), that agrees with f on an open set in U containing x. This is a
derivation as D is and is well defined independently of the extension chosen by virtue of the lemma on
the properties of tangent vectors. Now if g ∈ C∞(M) then we have by the lemma on tangent vectors,
denoting an arbitrary extension by a tilde, that

D̃(g) = D̃(g̃ ◦ ι) = D(g ◦ ι) = dxι(D)(g),

so D̃ = dxι(D) and thus dxι is surjective; with the injectivity above we have the desired conclusion.
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Remark 25. Given the fourth property of the above lemma we can safely identify TxU with TxM
without any further confusion.

Example 31. The final property in the lemma above tells us in particular that if M ⊂ Rn is an
open set which is a manifold then TxM is isomorphic to Rn for each x ∈ M ; in particular for each
A ∈ GL(n,R) we have TAGL(n,R) is isomorphic to Rn2

, which we identify with the space of n × n
matrices.

Let us use these properties of the differential to finish our desired generalisation:

Proposition 2. If M is an n-manifold and x ∈M then TxM is n-dimensional.

Proof. Let x ∈ M and φ : U → V be a chart on M with x ∈ U . As φ is a diffeomorphism, by the
third property in the lemma on the properties of the differential we have that

dxφ : TxU → Tφ(x)V

is an isomorphism. By the fourth property in the lemma on the properties of the differential we
have that TxU is isomorphic to TxM and Tφ(x)V is isomorphic to Tφ(x)Rn. Combining the above
we conclude that TxM is isomorphic to Tφ(x)Rn, which is n-dimensional by the proposition on the
Euclidean tangent space, hence TxM is n-dimensional (and hence also isomorphic to Rn).

We have thus generalised all of the properties of the usual derivative we desired our derivative of a
smooth map between manifolds to have: each point in the manifold is identified with a vector space
of the same dimension as the manifold, and the derivative of a smooth map between manifolds gives
us a linear map between these spaces.

3.2 Coordinate representations

We did not write down a specific basis of the tangent space when proving it shared the same dimension
as the manifold, but we now do so by looking at coordinate patches. Consider a chart, φ : U → V , in
the atlas of a manifold, M , and x ∈ U . As φ is a diffeomorphism by the properties of the differential
established above, we have that dxφ : TxM → Tφ(x)Rn is a linear isomorphism, with { ∂

∂xi

∣∣
φ(x)

}ni=1

a basis of Tφ(x)Rn (we are implicitly using the identification of Tφ(x)V with Tφ(x)Rn here). For each
i = 1, . . . , n we can define a basis of TxM by

∂

∂xi

∣∣∣∣
x

= (dxφ)
−1

(
∂

∂xi

∣∣∣∣
φ(x)

)
= dφ(x)(φ

−1)

(
∂

∂xi

∣∣∣∣
φ(x)

)
,

which act on f ∈ C∞(M) by

∂

∂xi

∣∣∣∣
x

(f) =
∂

∂xi

∣∣∣∣
φ(x)

(f ◦ φ−1) =
∂(f ◦ φ−1)

∂xi
(φ(x)) =

∂f

∂xi
(x).

In other words, the basis of TxM takes the partial derivative in the coordinate patch around x.

Definition 25. We call the basis { ∂
∂xi

∣∣
x
}ni=1 coordinate vectors of TxM , and for v =

∑n
i=1 vi

∂
∂xi

∣∣
x

we call vi for i = 1, . . . , n the components of v ∈ TxM .
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While the definition of the coordinate vectors depends on the choice of chart containing x ∈ M , the
way in which we defined TxM is independent of the choice of chart. One can see how the coordinate
vectors and components change between overlapping coordinate patches by looking at the transition
maps between the charts, this calculation is similar to the ones that follow so we omit it here and
leave it to the homework.

We next see what the differential looks like in coordinates, first examining it in Euclidean space. If
U ⊂ Rn and V ⊂ Rm are open, F : U → V is smooth and x ∈ U , we compute the matrix of the
differential dxF : TxRn → TF (x)Rm in the standard basis: writing x = (x1, . . . , xn) ∈ Rn with basis
{ ∂
∂xi

∣∣
x
}ni=1 for TxRn and y = (y1, . . . , ym) ∈ Rm with basis { ∂

∂yj

∣∣
y
}mj=1 for TxRm we have for each

i = 1, . . . , n and g ∈ C∞(Rm) that

dxF

(
∂

∂xi

∣∣∣∣
x

)
(g) =

∂

∂xi

∣∣∣∣
x

(g ◦ F ) =
m∑
j=1

∂g

∂yj

∂F j

∂xi
(x) =

(
m∑
j=1

∂F j

∂xi
(x)

∂

∂yj

∣∣∣∣
F (x)

)
(g),

and so

dxF

(
∂

∂xi

∣∣∣∣
x

)
=

m∑
j=1

∂F j

∂xi
(x)

∂

∂yj

∣∣∣∣
F (x)

.

Thus, the matrix representation of dxF is thus the Jacobian matrix of F ; i.e. dxF is precisely DxF !

Suppose now that F :M → N is a smooth map between manifolds, and x ∈M , φ : U → V is a chart
with x ∈ U , and ϕ : Ũ → Ṽ is a chart with F (x) ∈ Ũ . We then have the coordinate representation
of F denoted

F̃ = ϕ ◦ F ◦ φ−1 : φ(U ∩ F−1(Ũ)) → ϕ(Ũ)

has differential, dφ(x)F , represented as a matrix by the Jacobian of F̃ at φ(x). We have by the chain
rule that

dxF

(
∂

∂xi

∣∣∣∣
x

)
= dxF

(
dφ(x)(φ

−1)

(
∂

∂xi

∣∣∣∣
φ(x)

))
= dφ(x)(F ◦ φ−1)

(
∂

∂xi

∣∣∣∣
φ(x)

)
,

and as F ◦ φ−1 = ϕ−1 ◦ F̃ by definition we have

dxF

(
∂

∂xi

∣∣∣∣
x

)
= dφ(x)(ϕ

−1 ◦ F̃ )

(
∂

∂xi

∣∣∣∣
φ(x)

)
= dF̃ (φ(x))(ϕ

−1))

(
dφ(x)F̃

(
∂

∂xi

∣∣∣∣
φ(x)

))
.

Now by our calculation in Euclidean space above we see that

dxF

(
∂

∂xi

∣∣∣∣
x

)
= dF̃ (φ(x))(ϕ

−1)

(
m∑
j=1

∂F̃ j

∂xi
(φ(x))

∂

∂yj

∣∣∣∣
F̃ (φ(x))

)
=

m∑
j=1

∂F̃ j

∂xi
(φ(x))

∂

∂yj

∣∣∣∣
F (x)

.

We therefore conclude that the differential dxF is represented in coordinates by the Jacobian of its
coordinate representative. By using the identity, IM : M → M , in the above and following the
calculation, one sees how coordinate vectors and their components change between charts; precisely
we get that F̃ in the above is a transition map!
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3.3 Immersions, submersions, and embeddings

We now want to see what the differential of a smooth map between manifolds tells us about the map
itself. We first have the following generalisation of the Euclidean inverse function theorem:

Theorem 5. (Manifold inverse function theorem) If F :M → N is a smooth map between manifolds
with dxF invertible at some point x ∈ M , then there exist open sets U ⊂ M and V ⊂ N such that
F : U → V is a diffeomorphism.

Proof. As dxF is invertible, we must have that the dimensions ofM and N agree since the dimensions
of TxM and TF (x)N must also. Let φ : U → V and ϕ : Ũ → Ṽ be charts around x on M and F (x) on

N respectively. We then have that the smooth coordinate representation F̃ = ϕ ◦ F ◦ φ is such that
dφ(x)F̃ is invertible by the chain rule since the charts are diffeomorphisms and dxF is invertible by

assumption. Applying the Euclidean inverse function theorem to F̃ we ensure the existence of open sets
Vφ(x) ⊂ V and Ṽϕ(F (x)) ⊂ Ṽ containing φ(x) and ϕ(F (x)) respectively such that F̃ : Vφ(x) → Vϕ(F (x))

is a diffeomorphism. Defining open sets Ux = φ−1(Vφ(x)) ⊂ M and ŨF (x) = ϕ−1(Ṽϕ(F (x)) ⊂ N we

conclude that F : Ux → ŨF (x) is a diffeomorphism as desired.

Note that as dxF is invertible, M and N have the same dimension. This result says that if the
differential is invertible at a point then the smooth map is a local diffeomorphism. As we saw in the
proof, the coordinate representation, F̃ = ϕ◦F ◦φ−1, of F was a diffeomorphism and thus F̃ ◦φ = ϕ◦F
is also a chart onM ; i.e. with respect to the charts ϕ◦F onM and ϕ on N , we have that the coordinate
representation of F is the identity!

We try to generalise this idea of understanding how the coordinate representation of a smooth maps
behaves when the dimensions of the manifolds differ. We will do this by analysing the rank (the
dimension of the image) of the differential, a notion which is independent of the basis/coordinates
chosen:

Definition 26. If L : V → W is a linear map between finite dimensional vector spaces, we say that
L has maximal rank if the rank of L is equal to min{dim(V ), dim(W )}.

Observe that if dim(V ) ≤ dim(W ) then L is injective, if dim(V ) ≥ dim(W ) then L is surjective, and
if dim(V ) = dim(W ) then L is invertible. Up to a change of basis for the vector spaces there are only
two examples:

Example 32. For n ≤ m we have the standard immersion, ι : Rn → Rm, defined by

ι(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0) ∈ Rm.

Example 33. For n ≥ m we have the standard submersion, σ : Rn → Rm, defined by

ι(x1, . . . , xn) = (x1, . . . , xm) ∈ Rm.

With this notion of maximal rank, one can thus reinterpret the manifold inverse function theorem
as saying that if the differential of a smooth map between manifolds of the same dimension is of full
rank, then the map is a local diffeomorphism. Let’s generalise this:

Theorem 6. (Rank theorem) If F :M → N is a smooth map between manifolds with dxF of maximal
rank at some point x ∈M , then there exist charts on M and N around x and F (x) respectively such
that the coordinate representation of F is the restriction of the standard immersion or submersion.
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Proof. We first establish the theorem for maps between Euclidean spaces which will imply the result
in general by pre and post composing with charts, i.e. we establish it directly for the coordinate
representation. To this end let F : Rn → Rm be smooth with dxF of maximal rank for some x ∈ Rn.
We now address each case depending on whether n ≤ m or n ≥ m. Without of loss of generality,
indeed up to translation and a change of basis, we may assume that x = 0 ∈ Rn, F (x) = 0 ∈ Rm, and
d0F is the standard immersion or submersion.

If n ≤ m, we write Rm = Rn × Rm−n and define a smooth map F̃ : Rn × Rm−n → Rm by setting

F̃ (x1, . . . , xm) = F (x1, . . . , xn) + (0n, xn+1, . . . , xm),

where 0n denotes n zero entries. We then have by assumption that d0F̃ is the identity on Rm as
d0F is the standard immersion. By the Euclidean inverse function theorem we ensure the existence
of open sets Ũ , Ṽ ⊂ Rm containing the origin such that F̃ : Ũ → Ṽ is a diffeomorphism. By setting
U = Ũ ∩ Rn which is open in Rn we ensure that if y ∈ U then

F̃−1(F (y)) = F̃−1(F (y) + 0m) = F̃−1(F̃ (y, 0m−n)) = (y, 0m−n);

thus in some coordinates we have that F is the restriction of the standard immersion.

If n ≥ m, we write Rn = Rm × Rn−m and define a smooth map F̃ : Rn → Rm × Rn−m by setting

F̃ (x) = (F (x), π(x)),

where π : Rn → Rn−m is the smooth projection to the final n − m coordinates. We then have by
assumption that d0F̃ is the identity on Rn as d0F is the standard submersion. By the Euclidean
inverse function theorem we ensure the existence of open sets Ũ , Ṽ ⊂ Rn containing the origin such
that F̃ : Ũ → Ṽ is a diffeomorphism. We then note that if y ∈ Ṽ then y = (F (x), π(x)) for some

x ∈ Ũ and thus in particular, F (x) = (y1, . . . , ym). Observe now that

F (F̃−1(y)) = F (F̃−1(F (x), π(x))) = F (x) = (y1, . . . , ym);

thus in some coordinates we have that F is the restriction of the standard submersion.

As mentioned at the beginning of the proof, if we had a smooth map F :M → N between manifolds
with dxF of maximal rank for some x ∈ M , then by considering charts around x and F (x) we can
apply the above reasoning to the coordinate representation of F to yield the result.

We can use the rank theorem to establish a method for producing a large number of examples of
manifolds and compute their tangent spaces:

Theorem 7. (Regular value theorem) Let F :M → N be a smooth map between manifolds of dimen-
sion m and n respectively. If y ∈ N is such that F−1(y) ̸= ∅ and dxF : TxM → TyN is surjective for
all x ∈ F−1(y) then F−1(y) is an (m−n)-manifold with Tx(F

−1(y)) = Ker(dxF ) for each x ∈ F−1(y).

Proof. First note that m ≥ n or the statement is vacuous. We will equip F−1(y) with the subspace
topology so that it is Hausdorff and second countable since M is. We now define an atlas of charts on
F−1(y) with smooth transition maps. Given x ∈ F−1(y), since dxF is surjective by the rank theorem
we may choose some chart, φx : Ux → Vx, on M around x so that some coordinate representation of
F is given by the restriction of the standard submersion. We then note that F−1(y)∩Ux corresponds
to the points in Ux with first n coordinates in Vx ⊂ Rm equal to zero; this is since F (x) = y maps to

27



the origin in Rn in this coordinate representation. Let π : Rm → Rm−n be the smooth projection to
the final n−m coordinates and define a chart around x by

π ◦ φx : F−1(y) ∩ Ux → Rm−n,

which is a homeomorphism as π restricts to a homeomorphism on Vx ∩ {0m} × Rm−n ⊂ Rm. Varying
over all x ∈ F−1(y) gives an atlas for F−1(y), and we note that the transition maps are smooth since
the the transition maps for M are.

As each tangent vector arises as the velocity of a curve (homework 2), given v ∈ TxF
−1(y) for some

x ∈ F−1(y) as above we thus have some γ : I → F−1(y) such that γ(0) = x and γ′(0) = v. Note
that as γ(I) ⊂ F−1(y) we have (F ◦ γ)(t) = y for each t ∈ I, and so dxF (v)(f) = dxF (γ

′(0))(f) =
(f ◦ F ◦ γ)′(0) = 0; thus v ∈ Ker(dxF ) and so TxF

−1(y) ⊂ Ker(dxF ). On the other hand, since
dim(Ker(dxF )) = m− n = dim(TxF

−1(y)) we must have Tx(F
−1(y)) = Ker(dxF ) as desired.

Remark 26. We call points, y ∈ N , in the hypothesis of the regular value theorem regular values.
Sard’s theorem (not proved in this course) for manifolds implies that almost every (in the measure
theoretic sense) point of F (M) ⊂ N is a regular value; in other words, if we take a point in the image
of the map at random then with probability one its preimage will be a (m− n)-manifold.

Let’s apply the regular value theorem to a number of examples, allowing us a slicker method to verify
familiar objects are indeed manifolds and find their tangent spaces:

Example 34. Let F : Rn+1 → R be the smooth map defined by setting F (x1, . . . , xn+1) =
∑n+1

i=1 x
2
i ;

we then have that, for each r > 0, F−1(r) is the n-sphere of radius
√
r in Rn+1. We see that for each

x ∈ Rn+1 we have
dxF = (2x1, . . . , 2xn+1)

which is surjective whenever x ̸= 0, thus by the regular value theorem the sphere of radius r in Rn+1

is an n-manifold (note we use n + 1 − 1 = n here to find the dimension); in particular Sn is an
n-manifold. We also see from the above that

TxS
n = Ker(dxF ) =

{
v ∈ Rn+1

∣∣∣∣ n+1∑
i=1

vi · xi = 0

}
;

and so in particular the tangent space to a point x ∈ Sn is precisely the set of vectors perpendicular
to x.

Example 35. Let f : Rn → R and consider the smooth map F : Rn × R → R defined by F (x, t) =
f(x) − t; we then have that F−1(0) = graph(f) = {(x, y) ∈ Rn × R | y = f(x)} ⊂ Rn+1. We see that
d(x,t)F = (dxf,−1) which is of rank one and thus surjective, thus by the regular value theorem we
conclude that F−1(0) = graph(f) is an n-manifold. We also see from the above that

T(x,f(x))graph(f) = Ker(d(x,f(x))F ) = {(u, v) ∈ Rn × R | v = dxf(u)} = graph(dxf).

Example 36. Let ∆ : Rn2 → R denote the smooth determinant map, det : GL(n,R) → R, acting on
Euclidean space. For each A ∈ GL(n,R) let γ : I → GL(n,R) be defined by γ(t) = (1 + t)A, so that
∆(γ(t)) = (1 + t)n∆(A). We then compute that (taking f(x) = x identity on R) we have

(dA∆)(γ′(0))(x) = (∆ ◦ γ)′(0) = n∆(A);

we thus have that dA∆ is surjective for each A with non-zero determinant, thus by the regular value
theorem ∆−1(1) = SL(n,R) is an (n2− 1)-manifold. One can in fact also show that the tangent space
to the identity is the set of trace free matrices!
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The regular value theorem produces manifolds (level sets of smooth maps) that are subsets of some
other manifold (the domain of the smooth map). We would like to understand how these manifolds,
or indeed manifolds in general, ‘sit’ inside one another. Motivated by the rank theorem we introduce
the following notions:

Definition 27. We say that a smooth map F :M → N between manifolds is an:

• immersion if dxF is injective for each x ∈ M . We call the image of an immersion an im-
mersed submanifold.

• submersion if dxF is surjective for each x ∈ M . We call the image of a submersion a sub-
mersed submanifold

• embedding if F is a diffeomorphism onto its range (or equivalently an immersion which is a
homeomorphism onto its range). We call the image of an embedding, F (M), simply a subman-
ifold of N and often denote this simply by M ⊂ N .

Remark 27. The equivalence of the definitions of embeddings follows since if F is homeomorphic
onto its range then F (M) is also a manifold of the same dimension; this also implies that F−1 is well
defined on F (M). The injectivity of the differential implies surjectivity by the rank-nullity theorem,
since the dimensions of the tangent spaces must then agree, and thus the inverse function theorem
guarantees that F−1 is also smooth on F (M); hence F is a diffeomorphism onto its image. The other
direction of the equivalence is immediate since a diffeomorphism is by definition a homeomorphism
that must have injective differential.

Remark 28. By the rank theorem, any immersion is locally injective and any submersion is locally
surjective (since its coordinate representations will be). Any embedding is necessarily an injective
immersion, but the converse is not true (unless it is a homeomorphism onto its range) by considering
the image of [0, 1) in Rn as the curve that looks like a 6.

Let’s look at some examples:

Example 37. (immersions) The donut torus as the image of R2 is an immersed submanifold (but
the immersion is not injective so it is not an embedding, this also is clear since the domain is not
compact but the image is). The figure of eight or lemniscate curve that looks like an 8 is an immersed
submanifold in R2 as an immersion from S1. Similarly the Klein bottle and RP 2 can be realised as
immersed submanifolds of R3 (the latter is called the Boy surface). Note however that these latter two
examples are not able to be realised as submanifolds of R3 (one can show this by tropological methods).

Example 38. (submersions) Prototypical examples of submersions are provided by projection maps,
e.g. πM : M × N → M or the Hopf fibration map. Note that the differential of these maps cannot
be injective if the dimension of the domain is larger than that of the codomain. We will see more
examples of submersions when discussing vector bundles later in the course.

Example 39. (embeddings) The prototypical embedding is provided by the smooth inclusion map
ι :M → N which is a diffeomorphism onto its image (this in particular shows that the map from the
standard torus to the donut torus from homework 1 is an embedding); a concrete example of which is
the embedding ιM : M → M ×N by inclusion. Also, given a smooth map F : M → N and a regular
value y ∈ F (M), the proof of the regular value theorem shows that F−1(y) is a submanifold of M (by
inclusion).
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Given a submanifold S ⊂ M and a smooth map F : M → N between manifolds the restriction map
F |S = F ◦ι is smooth by composition. Similarly, given f ∈ C∞(S) one can use our results on extending
smooth functions to show that there exists some open set U ⊂ M containing M and an extension
f̃ ∈ C∞(U) that agrees with f on S. Using this, and the fact that every tangent vector arises from
a curve, one can show that for each x ∈ M we have TxS ⊂ TxM (or one can simply consider the
differential of the inclusion map ι : S →M).

Since we understand calculus in Euclidean space, if we can embed any manifold into some Euclidean
space then we can perform calculus on the manifold simply by viewing it as Euclidean calculus
restricted to the manifold. We establish a very weak formulation of this embedding for compact
manifolds:

Theorem 8. Every compact manifold can be embedded into Euclidean space.

Proof. LetM be a compact manifold of dimension n. SinceM is covered by the domains of the charts
of any atlas, since M is compact we may extract a finite collection of charts, {φi : Ui → Vi}ki=1, which
is still an atlas for M with smooth transition maps. We will show that M embeds in Rk(n+1).

We extend each chart to a smooth functions on all of M in such a way that they agree inside of the
domain of each chart. We further define bump functions, {ρi}ki=1 ⊂ C∞(M), such that ρi is identically
equal to one on Ui for each i = 1, . . . , k. Consider the map F :M → Rk(n+1) defined by setting

F (x) = (ρ1(x)φ1(x), . . . , ρk(x)φk(x), ρ1(x), . . . , ρk(x)),

which is smooth since the charts and bump functions defined above are; we will show that F is an
embedding.

We have that F is an immersion since, by the Liebniz/product rule for differentials we have that if
x ∈ Ui for some i = 1, . . . , k then dx(ρiφi) = dxφi, which is injective as charts are diffeomorphisms;
hence dxF is injective and thus F is an immersion.

We also see that F is injective since if F (x) = F (y) then we must have x ∈ Ui for some i = 1, . . . , k
and thus

φi(x) = ρi(x)φi(x) = ρi(y)φi(y) = φi(y),

from which we see that x = y as charts are diffeomorphisms; thus F−1 is well defined on F (M).

We conclude by showing that F is a homeomorphism onto its image; we know that F−1 is defined
on the F (M) since F is injective. As any closed set A ⊂ M is compact, since M is compact, we
ensure that, as F is smooth and hence continuous, F (A) is compact and hence closed in Rk(n+1) by
the Heine–Borel theorem. Thus, since (F−1)−1(A) = F (A), we see that F−1 is continuous since F is
a closed map and hence F is a homeomorphism. We thus have that F is an embedding as it is an
immersion which is homeomorphic onto its image.

Remark 29. The proof actually shows that any n-manifold covered by finitely many, say k, charts
can be embedded into Euclidean space, namely Rk(n+1). This embedding is ‘wasteful’ in some sense,
it embeds Sn into R2n+2 but we know it embeds into Rn+1! Whitney used the second countability as-
sumption (compact exhaustions specifically) along with a projection technique based on Sard’s theorem
(mentioned above) to show that every n-manifold (not necessarily compact) in fact embeds into R2n+1;
referred to as the weak Whitney embedding theorem. Using topological methods this was improved to
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embeddings in R2n; referred to as the strong Whitney embedding theorem. If one allows for immer-
sions then the weak and strong Whitney immersion theorems allow for immersions into R2n and R2n−1

respectively. See [Lee12, Chapter 6] for proofs of the proceeding facts. Moreover, if one has a notion
of distance on a manifold, namely a Riemannian metric which we will introduce later in the course,
then the Nash embedding theorem guarantees that one can embed any such manifold into some high
dimensional Euclidean space isometrically (i.e. in a way that preserves distances).

3.4 The tangent bundle, global differential, and vector fields

We now want to study vector fields on manifolds just as we did for Euclidean space; namely assigning
a tangent vector to each point of the manifold in a smoothly varying way. To make sense of such a
notion we will need the following:

Definition 28. Given a manifold, M , the tangent bundle of M , denoted TM , is the disjoint union
of the tangent spaces of M ; i.e. we have

TM =
⋃
x∈M

TxM.

We write elements of TM either as pairs (x, v) ∈ M × TxM or more commonly just as v ∈ TxM .
The tangent bundle comes with a natural projection map π : TM → M defined for (x, v) ∈ TM by
π(x, v) = x (projection to the first factor).

Let us look at a couple of examples:

Example 40. Since we have that TxRn is canonically identified with Rn we have

TRn =
⋃

x∈Rn

TxRn ≃
⋃

x∈Rn

Rn ≃ Rn × Rn = R2n,

where we used the symbol ≃ to denote isomorphisms. We thus see that the tangent bundle to n-
dimensional Euclidean space is a 2n-manifold.

Example 41. We will show that TS1 is diffeomorphic to the cylinder S1 × R: Consider the map
f : S1 × R → TS1 defined by f(cos(θ), sin(θ), λ) = λ(− sin(θ), cos(θ)) ∈ T(cos(θ),sin(θ))S

1 which is
smooth with smooth inverse, and hence a diffeomorphism. It is not true that TS2, or the tangent
bundle of any even dimensional sphere, is diffeomorphic to S2 × R2 however, by virtue of the “hairy
ball” theorem (more on this later).

Remark 30. Since manifolds may lack any linear structure, we cannot canonically identify each
tangent space with a copy of Euclidean space and thus in general we do not expect that TM is diffeo-
morphic to M ×Rn; for example, this is true for TS1 as seen above but not for TS2. We will discuss
this notion further when looking at vector bundles later on in the course.

While the definition of the tangent bundle is just as a disjoint union of vector spaces, it actually
possesses a manifold structure determined by the underlying manifold itself:

Proposition 3. Given an n-manifold, M , its tangent bundle, TM , is a 2n-manifold and the natural
projection map is a smooth submersion.
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Proof. We define a topology on TM by declaring subsets V ⊂ TM open if V = π−1(U) for some open
U ⊂M . One then has that the Hausdorff and second countability of TM follows from that of M .

Given an atlas of charts, {φα : Uα → Vα}α∈A, for M we define charts, φ̃α : π−1(Uα) → R2n, on
TM for each α ∈ A by setting φ̃α(x, v) = (φα(x), dxφα(v)) for each pair (x, v) ∈ TM ; these are
homeomorphisms onto their image since charts are diffeomorphisms. We then have for α, β ∈ A and
(y, η) ∈ TRn that

φ̃β ◦ φ̃−1
α (y, η) = φ̃β(φ

−1
α (y), dy(φ

−1
α )(η)) = (φβ ◦ φ−1

α (y), dy(φβ ◦ φ−1
α )(η))

where in the second equality we used the fact that (dφ−1
α (y)φβ) ◦ dy(φ−1

α )(η) = dy(φβ ◦ φ−1
α )(η) by

the chain rule for the differential. Since the transition maps, φβ ◦ φ−1
α , are smooth for M the maps,

φ̃β ◦ φ̃−1
α , are thus smooth and hence {φ̃α : π−1(Uα) → R2n}α∈A is an atlas of charts for TM with

smooth transition maps; so TM is a 2n-manifold. To see that π : TM → M is a smooth submersion
it suffices to note that its coordinate representation is the smooth submersion.

Immediately from the proof we then have that:

Corollary 5. If an n-manifold, M , has a one chart atlas then TM is diffeomorphic to M × Rn.

With the definition of the tangent bundle we can now generalise the notion of vector fields:

Definition 29. Given a manifold, M , a vector field on M is a smooth map X : M → TM such
that Xx = X(x) ∈ TxM for each x ∈ M (or equivalently πM ◦X = IM). We denote the collection of
vector fields on M by Γ(TM) or X(M) which are often referred to as sections of TM .

We now look at some examples:

Example 42. In Rn we have vector fields { ∂
∂xi

}ni=1 ⊂ Γ(TRn) defined such that ∂
∂xi

(x) = ∂
∂xi

∣∣
x
for

each x ∈ Rn (i.e. these vector fields act on smooth functions by differentiation in the ith coordinate
direction at a point x ∈ Rn). Since the { ∂

∂xi

∣∣
x
}ni=1 form a basis of the tangent space, which is just Rn,

at each point, x ∈ Rn, we then have that any vector field, X ∈ Γ(TRn), is such that X =
∑n

i=1Xi
∂
∂xi

where Xi ∈ C∞(Rn) for each i = 1, . . . , n.

Example 43. Similarly to the above example, given a point in a manifold, x ∈ M , and a chart,
φ : U → V , around x we have the coordinate vector fields, { ∂

∂xi
}ni=1 ⊂ Γ(TU) (which we can

extend to Γ(TM)), defined such that ∂
∂xi

(x) = ∂
∂xi

∣∣
x
for each x ∈ U . Since the { ∂

∂xi

∣∣
x
}ni=1 form a basis

of the tangent space, TxM , at each point, x ∈ U , have that each X ∈ Γ(TM) locally takes the form
X =

∑n
i=1Xi

∂
∂xi

where Xi ∈ C∞(U) are the component functions for each i = 1, . . . , n.

Example 44. If M ⊂ Rn is a submanifold, then any vector field on M is the restriction of some
vector field, X ∈ Γ(TRn), such that Xx ∈ TxM for each x ∈ M . E.g. define X = −x2 ∂

∂x1
+ x1

∂
∂x2

which restricts to a vector field on S1 ⊂ R2 acting on f ∈ C∞(S1) by X(x1,x2)(f) = −x2 ∂f
∂x1

+ x1
∂f
∂x2

.

Remark 31. We have that Γ(TM) is a vector space (in fact since we can multiply a vector field by
a smooth function it is also a module over C∞(M)).

Remark 32. Using our tools on extending smooth functions we can extend vector fields defined on
subsets of a manifold to the entire manifold.
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Given a manifold, M , and both a vector field, X ∈ Γ(TM), and a smooth function, f ∈ C∞(M), we
can define another smooth function, X(f) ∈ C∞(M), by setting X(f)(x) = Xx(f) for each x ∈ M .
This is well defined since Xx = X(x) ∈ TxM for each x ∈ M and smooth since both X and f are.
Moreover, we note that given f, g ∈ C∞(M) the product rule for tangent vectors applied to the above
construction shows that X(fg) = fX(g) + gX(f); i.e. vector fields also satisfy the product rule (note
here that we are viewing the vector field as a map X : C∞(M) → C∞(M)). This perspective yields
the following characterisation of vector fields:

Proposition 4. Given a manifold, M , any linear map D : C∞(M) → C∞(M) such that D(fg) =
fD(g) + gD(f) for each f, g ∈ C∞(M) (i.e. a derivation between the set of smooth functions on a
manifold) corresponds to a unique vector field, X ∈ Γ(TM). In other words D(f) = X(f) for each
f ∈ C∞(M).

Proof. Given D as in the statement we can define tangent vectors, Xx ∈ TxM , for each x ∈ M by
considering Xx(f) = D(f)(x) for each f ∈ C∞(M). We then have that the map X : M → TM is
such that D(f) = X(f), and hence X is smooth since D is. The uniqueness follows since X is entirely
determined by the action of D.

With the above in mind, any derivation between smooth functions on a manifold gives rise to a vector
field. Using this idea we can construct new vector fields:

Example 45. (The Lie bracket) Given a manifold, M , and two vector fields X, Y ∈ Γ(TM) then
it is not necessarily true that XY ∈ Γ(TM), where for f ∈ C∞(M) we are defining XY (f) =
X(Y (f)) ∈ C∞(M) as in the above discussion. Explicitly we can consider, on R2, the example
X = ∂

∂x
, Y = x ∂

∂y
and the smooth functions f(x, y) = x, g(x, y) = y; then we have that XY (fg) = 2x

but fXY (g) + gXY (f) = x and hence XY is not a derivation between the set of smooth functions!

The precise reason for the failure of the composition of vector fields to be a vector field is due to the
appearance of a second derivative term (which one can verify in coordinates) in XY . However, since
second derivatives commute we can consider the difference XY − Y X which will be a vector field! To
verify this we can compute directly that given f, g ∈ C∞(M) we have

XY (fg)− Y X(fg) = f(XY − Y X)(g) + g(XY − Y X)(f),

thus XY −Y X defined a derivation between smooth functions and hence by the characterisation above
is a vector field. We denote this vector field by [X, Y ] = XY − Y X ∈ Γ(TM) and call it the Lie
bracket of X and Y . This vector field is very useful in geometry.

Using the tangent bundle we can also extend the notion of the differential of a smooth map, which is
defined at a given point, to one defined globally:

Definition 30. If F : M → N is a smooth map between manifolds, then the global differential of
F , denoted dF : TM → TN , is defined for (x, v) ∈ TM by

dF (x, v) = (F (x), dxF (x));

in other words dF is the unique map whose restriction to each tangent space, TxM , is the differential
at that point, dxF : TxM → TF (x)N .

Note that for maps between Euclidean spaces this is the usual notion of the global derivative. Since
they agree at points of the manifold, the global differential inherits properties from the usual differ-
ential:
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Proposition 5. (Properties of the global differential) Let F : M → N and G : N → P be smooth
maps between manifolds. Then we have the following:

1. dF : TM → TN is smooth as a map between manifolds.

2. d(G ◦ F ) = dG ◦ dF .

3. d(IM) = ITM .

4. If F is a diffeomorphism then dF is a diffeomorphism with (dF )−1 = d(F−1).

Proof. The first property follows by virtue of the fact that the coordinate representation of dxF
depends smoothly on the point x ∈ M . The second, third, and fourth property follow directly from
the properties of the differential previously established.

Just as we alternatively called the differential of a smooth map at a point a pushforward, we have the
following notion:

Definition 31. If F :M → N is a diffeomorphism between manifolds, then the pushforward of F ,
denoted F∗ : Γ(TM) → Γ(TN), is defined for X ∈ Γ(TM) by F∗(X) = dF (X); i.e. F∗(X)(F (x)) =
dxF (Xx) for each x ∈M .

Remark 33. We require F to be a diffeomorphism in the definition above since if F were not injective
then it would not be well defined, and if F was not surjective then it would not be defined on all of N .

3.5 Cotangent bundle, 1-forms, and the line integral

A physical interpretation of the integral along a curve in Euclidean space is that of the ‘work’ done
moving along the curve. Precisely, given a smooth curve γ : [a, b] → Rn with γ(a) = x and γ(b) = y,
the integral along this curve should provide us with a number quantifying how much ‘work’ (or energy
etc.) was done moving from x to y along γ. We can discretise this curve by considering vectors, vi,
joining points, xi−1 to xi, which lie on γ so that x0 = a and xn = b, and then assign an amount of
‘work’, ωi ∈ R, taken to move along the vector vi from xi−1 to xi. The ‘work’ done along this discrete
path of vectors from a to b is then equal to

∑n
i=1 ωi. If we imagine taking a limit of this process we

would need an object, ω, which inputs vectors tangent to the curve and outputs a number at each
point of γ. We should then have by a limiting process that the ‘work’ done to move from a to b along
γ, or the integral of ω along γ, is given by∫

γ

ω = lim
n→∞

n∑
i=1

ωi.

See [Tao20] for more motivation in this vein (which is where I took the idea for this brief motivation
from). In this section we will make this above idea precise.

In order to make sense of the above discussion we will introduce objects that are “dual” to tangent
vectors and fields, for which we need to recall some linear algebra:

Definition 32. Given a finite dimensional vector space, V , over R, a covector is a linear functional
ω : V → R; i.e. a linear map from V to R. The space of all covectors is the dual space of V , which
we denote by V ∗. Given a basis, {ei}ni=1 ⊂ V , of V we define the dual basis, {E i}ni=1 ⊂ V ∗, for V ∗
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to be the covectors such that E i(ej) = δij (equal to 1 if i = j and zero otherwise); thus the dimension
of V and V ∗ are the same. Given a linear map L : V → W between finite dimensional vector spaces
over R we define the dual map, L∗ : W ∗ → V ∗, by setting L∗ω(v) = ω(L(v)) for each ω ∈ W ∗ and
v ∈ V .

Example 46. Given the standard basis, {ei}ni=1 ⊂ Rn (i.e. equal to one in the ith position and zero
elsewhere), of Rn then the dual basis, {E i}ni=1 ⊂ Rn, is such that E i(v) = vi for v = (v1, . . . , vn) ∈ Rn.

We are now ready to define objects dual to tangent vectors on manifolds:

Definition 33. Let x ∈ M be a point in a manifold. The cotangent space to M at x, denoted
T ∗
xM , is the dual space to TxM . Elements of T ∗

xM are called cotangent vectors.

In coordinates we have:

Definition 34. Given local coordinates around a point in a manifold, x ∈ M , we had a basis of
coordinate vectors, { ∂

∂xi

∣∣
x
}ni=1 ⊂ TxM , for TxM . We then denote its dual basis of coordinate 1-

forms by {dxi|x}ni=1 ⊂ T ∗
xM , and for ω =

∑n
i=1 ωidx

i we call ωi for i = 1, . . . , n the components of
ω ∈ T ∗

xM .

Remark 34. We note that the components of covectors change in the opposite way to vectors. This
motivates why we call tangent vectors covariant, since their components transform in the same
way as the coordinate partial derivatives, while we call cotangent vectors contravariant, since their
components transform in the oppose way to the coordinate partial derivatives (see homework 3 question
2).

Example 47. One important example of a covector is determined by the differential of a smooth
function: i.e. given f ∈ C∞(M) then the differential dxf : TxM → R, which is a linear map, can be
viewed as an element of T ∗

xM ; in coordinates we then have that dxf =
∑n

i=1
∂f
∂xi

(x) · dxi.

Just as we did for tangent vectors, we can consider the collection of all cotangent spaces:

Definition 35. Given a manifold, M , the cotangent bundle of M , denoted T ∗M , is the disjoint
union of the cotangent sapces of M ; i.e. we have

T ∗M =
⋃
x∈M

T ∗
xM.

We write elements of T ∗M either as pairs (x, ω) ∈ M × T ∗
xM or more commonly just as ω ∈ T ∗

xM .
The cotangent bundle comes with a natural projection map π : T ∗M → M defined for (x, ω) ∈ T ∗M
by π(x, ω) = x (projection to the first factor).

Just as for the tangent bundle, the cotangent bundle has a manifold structure determined by the
underlying manifold itself:

Proposition 6. Given an n-manifold, M , its cotangent bundle, T ∗M , is a 2n-manifold and the
natural projection map is a smooth submersion.

Proof. The proof is essentially the same idea we used to show that TM was a manifold. We define
a topology on T ∗M by declaring subsets V ⊂ TM open if V = π−1(U) for some open U ⊂ M . One
then has that the Hausdorff and second countability of T ∗M follows from that of M .
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Given an atlas of charts, {φα : Uα → Vα}α∈A, for M we define charts, φ̃α : π−1(Uα) → R2n, on T ∗M
for each α ∈ A by setting φ̃α(x, ω) = (φα(x), (dφα(x)(φ

−1
α ))∗(ω)) for each pair (x, ω) ∈ TM ; these are

homeomorphisms onto their image since charts are diffeomorphisms. Here we are using the fact that
φα is a diffeomorphism to ensure that dφ(x)(φ

−1
α ) : Rn → TxM is an isomorphism, and hence its dual

map is an isomorphism (dφ(x)(φ
−1
α ))∗ : T ∗

xM → Rn.

We then have for α, β ∈ A and (y, η) ∈ T ∗Rn that

φ̃β ◦ φ̃−1
α (y, η) = φ̃β(φ

−1
α (y), (dφ−1

α (y)φα)
∗(η)) = (φβ ◦ φ−1

α (y), (dy(φβ ◦ φ−1
α ))∗(η)).

In the above we computed, noting (A ◦B)∗ = B∗ ◦ A∗ for the dual map, that

(dφβ◦φ−1
α (y)(φ

−1
β ))∗ ◦ (dφ−1

α (y)φα)
∗(η) = (dφ−1

α (y)φα ◦ dφβ◦φ−1
α (y)(φ

−1
β ))∗(η) = (dφβ◦φ−1

α (y)(φα ◦ φ−1
β ))∗(η),

using the chain rule for the second equality, and concluded by noting that

dφβ◦φ−1
α (y)(φα ◦ φ−1

β ) = dy(φβ ◦ φ−1
α )

since φα ◦ φ−1
β is a diffeomorphism.

Since the transition maps, φβ ◦φ−1
α , are smooth for M the maps, φ̃β ◦ φ̃−1

α , are thus smooth and hence
{φ̃α : π−1(Uα) → R2n}α∈A is an atlas of charts for T ∗M with smooth transition maps; so T ∗M is a
2n-manifold. To see that π : T ∗M →M is a smooth submersion it suffices to note that its coordinate
representation is the smooth submersion.

Immediately from the proof we then have that:

Corollary 6. If an n-manifold, M , has a one chart atlas then T ∗M is diffeomorphic to M ×Rn.

Analogously to the notion of a vector field we have the following:

Definition 36. Given a manifold, M , a covector field or more commonly 1-form onM is a smooth
map, ω : M → T ∗M , such that ωx = ω(x) ∈ T ∗

xM for each x ∈ M (or equivalently π ◦ ω = IM). We
denote the collection of 1-forms on M by Γ(T ∗M) or X∗(M) which are often referred to as sections
of T ∗M .

Remark 35. We have that Γ(T ∗M) is a vector space (in fact since we can multiply a vector field by
a smooth function it is also a module over C∞(M)).

Remark 36. Using our tools on extending smooth functions we can extend 1-forms defined on subsets
of a manifold to the entire manifold.

Remark 37. Note that for each ω ∈ Γ(T ∗M) and X ∈ Γ(TM) we have that ω(X) ∈ C∞(M), where
ω(X)(x) = ωx(Xx) for each x ∈M .

We now look at some examples:

Example 48. In Rn we have 1-forms {dxi}ni=1 ⊂ Γ(T ∗Rn) defined such that dxi(x) = dxi|x for each
x ∈ Rn. Since the {dxi|x}ni=1 form a basis of the cotangent space, which is just Rn, at each point,
x ∈ Rn, we then have that any 1-form, ω ∈ Γ(T ∗Rn), is such that ω =

∑n
i=1 ωi

∂
∂xi

where ωi ∈ C∞(Rn)
for each i = 1, . . . , n.

36



Example 49. Similarly to the above example, given a point in a manifold, x ∈ M , and a chart,
φ : U → V , around x we have the coordinate 1-forms, {dxi}ni=1 ⊂ Γ(T ∗U) (which we can extend
to Γ(TM)), defined such that dxi(x) = dxi|x for each x ∈ U . Since the {dxi|x}ni=1 form a basis of
the cotangent space, T ∗

xM , at each point, x ∈ U , have that each ω ∈ Γ(T ∗M) locally takes the form
ω =

∑n
i=1 ωi

∂
∂xi

where ωi ∈ C∞(U) are the component functions for each i = 1, . . . , n.

Example 50. If M ⊂ Rn is a submanifold, then any 1-form on M is the restriction of some 1-
form, ω ∈ Γ(T ∗Rn), such that ωx ∈ T ∗

xM for each x ∈ M . E.g. recall that we defined X(x1,x2) =
−x2 ∂

∂x1
+ x1

∂
∂x2

, which restricted to a vector field on S1 ⊂ R2 acting on f ∈ C∞(S1) by X(x1,x2)(f) =

−x2 ∂f
∂x1

+ x1
∂f
∂x2

. If we consider the 1-form ω(x1,x2) = x1dx2−x2dx1

x2
1+x2

2
defined on Rn \ {0} restricted to

S1 ⊂ Rn \ {0}, then we have ω(X) = 1!

By using the dual map, one can pullback covectors on the target to the domain, in the opposite
manner to which vectors were pushed forwards by the differential. We then have the following notion:

Definition 37. If F :M → N is a smooth map between manifolds, then the pullback of F , denoted
F ∗ : Γ(T ∗N) → Γ(T ∗M), is defined for ω ∈ Γ(T ∗N) by F ∗ω = (dxF )

∗(ω); i.e. F ∗ω(x) = (dxF )
∗(ωx)

for each x ∈M .

As mentioned above, a smooth function, f ∈ C∞(M), determines a covector at every point, x ∈ M
given by its differential at that point, dxf ∈ T ∗

xM . By combining each of these differentials we get a
smooth 1-form, df ∈ Γ(T ∗M), which we also refer call the differential of f , defined at each point by
df(x) = dxf (it is worth noticing that this coincides with the definition of the global differential since
we can canonically identify the tangent spaces of R with each other). In coordinates we then have the
expression

df =
n∑

i=1

∂f

∂xi
dxi,

which in one dimension yields the familiar expression df = df
dx
dx from elementary calculus. We can

use this coordinate expression to explicitly compute some examples:

Example 51. If xj : U → R is the smooth jth coordinate function then we have d(xj) = dxj.

Example 52. If f(x, y) = x2 cos(x)y on R2 then

df =
∂f

∂x
dx+

∂f

∂y
dy = (2x cos(x)y − x2 sin(x)y)dx+ (x2 cos(x))dy.

Example 53. We can also use the coordinate expression to relate coordinate 1-forms with respect to
different coordinates. E.g. on R2 we have Cartesian coordinates, (x, y), and polar coordinates, (r, θ),
which are related by the formulae x = r cos(θ), y = r sin(θ). We can then compute that their coordinate
1-forms are related by the usual formulae

dx = cos(θ)dr − r sin(θ)dθ, dy = sin(θ)dr + r cos(θ)dθ.

Since the coordinate components for the differential of a smooth function are simply partial derivatives
of the function (on the manifold) it inherits properties from the usual derivative in Euclidean space,
the proofs of which are then immediate since they hold in Euclidean space:

Proposition 7. (Properties of the differential 1-form) Given a manifold, M , f, g ∈ C∞(M), and
λ ∈ R. Then we have the following:
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1. d(f + λg) = df + λdg.

2. d(fg) = gdf + fdg.

3. df = 0 if and only if f is constant on each connected component of M .

We can now define the line integral of a 1-form, beginning in one dimension. Consider a 1-manifold,
M , a smooth curve γ : [a, b] → M (here we mean the restriction of some smooth curve defined on
an open set containing this closed interval), and a 1-form ω ∈ Γ(T ∗M). In coordinates we have that
ω = fdx for some smooth function, f , of one variable; we then simply define the line integral of ω
along γ to be ∫

γ

ω =

∫ b

a

f(t) dt

in the usual sense from one variable calculus; notice however that dt is not a 1-form here, so the
notation is not too precise! More generally, if M is a manifold of any dimension, γ : [a, b] → M is
a smooth curve, and ω ∈ Γ(T ∗M), we can define a smooth one variable function ωγ(t)(γ

′(t)) for each
t ∈ [a, b] (this is well defined since ωγ(t) ∈ T ∗

γ(t)M and γ′(t) ∈ Tγ(t)M for each t ∈ [a, b]).

Definition 38. Given a manifold, M , the line integral of ω ∈ Γ(T ∗M) along a smooth curve
γ : [a, b] →M , denoted

∫
γ
ω, is defined to be∫

γ

ω =

∫ b

a

ωγ(t)(γ
′(t)) dt.

Remark 38. Notice that if we consider −γ : [0, 1] → M (setting a = 0 and b = 1 for brevity and
without loss of generality) defined by −γ(t) = γ(1 − t) i.e. by reversing the direction of γ, then we
have ∫

−γ

ω = −
∫
γ

ω.

Remark 39. One can relate this definition of the line integral for 1-forms to the usual one for vector
fields in Euclidean space by means of the dot product (see homework 3).

Remark 40. Some authors, e.g. in [Lee12, Chapter 11], use the pullback of 1-forms and define∫
γ
ω =

∫ b

a
γ∗ω, noting then that γ∗ω is then a 1-form on R and hence is of the form fdx for some

smooth one variable function, f ; this agrees with our definition since

(γ∗ω)(t) = (dtγ)
∗(ωγ(t)) = ωγ(t)(γ

′(t)).

Remark 41. If instead one relaxes the smoothness condition on the curve to piecewise smooth then
one can define

∫
γ
ω =

∑k−1
i=0

∫ xi+1

xi
ωγ(t)(γ

′(t))dt if γ : [a, b] → M is smooth on each interval [xi, xi+1]

for each i = 0, . . . , k − 1, where x0 = a and xn−1 = b. See [Lee12, Chapter 11] for more on this.

Let us now compute an example:

Example 54. Consider the 2-manifold given by the punctured plane, M = R2 \ {0}, the smooth
closed curve γ : [0, 2π] → M defined by γ(t) = (cos(t), sin(t)), and 1-form, ω ∈ Γ(T ∗M), defined by
ω(x,y) =

xdy−ydx
x2+y2

. We have that γ′(t) = (− sin(t), cos(t)) and thus along γ we have dx = − sin(t)dt,

dy = cos(t)dt. By the definition above, we compute that∫
γ

ω =

∫ 2π

0

ωγ′(t)(γ
′(t)) dt =

∫ 2π

0

cos(t)(cos(t)dt)− sin(t)(− sin(t)dt)

cos2(t) + sin2(t)
=

∫ 2π

0

1 dt = 2π;

we will revisit this example later on in the course.
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When we consider the 1-form given by the differential of a smooth function, we have the following
generalisation of the fundamental theorem of calculus for line integrals:

Theorem 9. (FTC for line integrals) Given a manifold, M , a smooth curve γ : [a, b] → M , and a
smooth function, f ∈ C∞(M) we have∫

γ

df = f(γ(b))− f(γ(a)).

In particular if γ is closed then
∫
γ
df = 0.

Proof. We compute directly from the definitions that∫
γ

df =

∫ b

a

dγ(t)f(γ
′(t)) dt =

∫ b

a

(f ◦ γ)′(t) dt = f(γ(b))− f(γ(a)),

where we have used the one variable FTC in the final equality. If γ(a) = γ(b) then
∫
γ
df = 0.

The FTC for line integrals established above allows for integrals of 1-forms along curves to be computed
easily, provided we know that they arise as the differential of a function. In what will be relevant
terminology later on in the course, we say that a 1-form, ω ∈ Γ(T ∗M), is exact if it arises as the
differential of a smooth function f ∈ C∞(M); i.e. if ω = df . If ω = df then we call f the potential for
ω (notice then that potentials are unique up to the addition of a constant). As a further consequence
we also know then that the line integral of any exact 1-form over a smooth closed curve is zero, we
refer to such forms as conservative (one can in fact show that 1-forms are exact if and only if they
are conservative, e.g. see [Lee12, Chapter 11]). Observe that the example computed above on the
punctured plane is not conservative, as its integral around a closed loop was non-zero, and thus it
cannot be exact; we will revisit these ideas when discussing de Rham cohomology later on in the
course.

4 Constructions on manifolds

Using all of the theory introduced so far we can now start to build up constructions on manifolds that
will ultimately aid us in defining orientations.

4.1 Vector bundles

Both the tangent and cotangent bundles were examples of collections of vector spaces that formed
a manifold with a natural projection map to some underlying manifold. Here we generalise this
construction and introduce the following notion:

Definition 39. A vector bundle of rank k over an n-manifold, M , called the base is an (n + k)-
manifold, E, called the total space along with a smooth submersion, π : E →M , such that:

• For each x ∈M we have that Ex = π−1(x), the fibre over x, is a k-dimensional vector space.

• For each x ∈M there is an open set U ⊂M containing x and a diffeomorphism, ψ : π−1(U) →
U × Rk, the local trivialisation near x, with πU ◦ ψ = π (where πU : U × Rk → U is smooth
projection to the first factor) and ψ : Ey → y × Rk a linear isomorphism for each y ∈ U .
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Remark 42. If {φα : Uα → Vα}α∈A is an atlas with smooth transition maps for M then, potentially
shrinking the domains of the charts, that there is a locally trivialising atlas with smooth transition
maps for E given by {ψα : π−1(Uα) → Vα × Rk}α∈A.

Let us look at some examples:

Example 55. We have seen that the tangent bundle, TM , and the cotangent bundle, T ∗M , are both
vector bundles of rank n.

Example 56. The trivial bundle of rank k for M is given by the product manifold M × Rk. In
particular we saw that the tangent bundle, TS1, of the circle, S1, is diffeomorphic to the trivial bundle
S1 × R.

Example 57. We can consider the Möbius band, B, as introduced in the introductory examples of
manifolds as a vector bundle of rank 1 over the circle, S1. We note that the Möbius band is not
diffeomorphic to S1 × R however!

As direct generalisations of the notions of vector fields and 1-forms we introduce the following notion:

Definition 40. Given a vector bundle, π : E → M , a section of E is a smooth map, s : M → E,
such that s(x) ∈ Ex for each x ∈M (or equivalently π ◦ s = IM). We denote the collection of sections
of E by Γ(E).

Let us look at some examples:

Example 58. We have seen that vector fields are sections of the tangent bundle and 1-forms are
sections of the cotangent bundle.

Example 59. Given a smooth function f : M → Rk we can view this as a section of the trivial
bundle M × Rk by considering s(x) = (x, f(x)) for each x ∈ M ; we then have that graph(f) = s(M)
is embedded in M × Rk.

We now introduce a notion allowing us to determine whether two vector bundles are the same, namely
a diffeomorphism which respects the vector bundle structure:

Definition 41. We say that two vector bundles π : E →M and π̃ : Ẽ →M are isomorphic if there
exists a diffeomorphism ψ : E → Ẽ with π̃ ◦ψ = π and such that ψ : Ex → Ẽx is a linear isomorphism
for each x ∈M ; ψ is called a bundle isomorphism. Moreover, we say that a vector bundle of rank
k, π : E →M , is trivial if it is isomorphic to the trivial bundle M × Rk.

We saw that the tangent bundle for the circle, TS1, is trivial but that the Möbius bundle is not. We
would like to understand a way to determine whether a vector bundle is trivial or not, for which we
relate the triviality to the existence of nowhere vanishing sections that form a basis:

Lemma 4. A vector bundle of rank k, π : E → M , is trivial if and only if there exist sections
s1, . . . , sk ∈ Γ(E) such that {si(x)}ki=1 is a basis of Ex for each x ∈M .

Proof. If we have an isomorphism ψ : E → M × Rk then we can define sections si(x) = ψ(x, ei) for
each x ∈ M and i = 1, . . . , k where {ei}ki=1 is a basis of Rk. On the other hand if we have sections
s1, . . . , sk ∈ Γ(E) such that {si(x)}ki=1 is a basis of Ex for each x ∈ M then we can define a bundle
isomorphism Ψ :M × Rk → E by setting Ψ(x, (λ1, . . . , λk)) =

∑k
i=1 λisi(x).
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The ‘hairy ball theorem’ for the even-dimensional spheres shows that there exist no continuous non-
zero maps into their tangent bundle; see [Mil78] for a concise proof. The lemma above thus tells us
that the tangent bundles of even dimensional spheres cannot be trivial! We make a specific definition
in this case, capturing the idea that we can compare whether tangent vectors at all points of the
manifold are parallel:

Definition 42. We say that a manifold, M , is parallelisable if its tangent bundle, TM , is trivial;
i.e. if TM is isomorphic to M × Rn.

The lemma allows us to check this for several examples:

Example 60. As noted above, by application of the lemma we have that S2n is not parallelisable for
each n ≥ 1. We saw that S1 is parallelisable, and in fact one can show that the only parallelisable
spheres are S0, S1, S3, and S7; this is related to the existence of the complex numbers, quaternions,
and octonians.

Example 61. We will show that any lie group (recall this is a manifold with diffeomorphisms for
group actions), G, is parallelisable; in particular no even dimensional sphere could be a Lie group
(on homework 3 we will see that S3 is). Given each g ∈ G we have that the left multiplication map,
Lg : G → G, is a smooth diffeomorphism and thus deLg : TeG → TgG is a linear isomorphism
(where e ∈ G is the identity). We can thus take some basis, {vi}ni=1, of TeG and form a basis,
{deLg(vi)}ni=1, for TgG; this provides smooth sections satisfying the conditions of the above lemma,
hence G is parallelisable.

Shortly, we will require a way to construct vector bundles given some collection of vector spaces
associated to points of a manifold, for which the following result will be indispensable:

Lemma 5. (Vector bundle chart lemma) Let M be a smooth manifold and for each x ∈ M a vector
space Ex of dimension k. Let E =

⊔
x∈M Ex and define π : E → M be the projection (i.e. π(Ex) = x

for each x ∈M). If the following hold:

• There is an open cover, {Uα}α∈A, of M such that for each α ∈ A there is a bijection ψα :
π−1(Uα) → Uα × Rk, with ψα : Ex → x× Rk a linear isomorphism for each x ∈ Uα.

• For each α, β ∈ A with Uα ∩Uβ ̸= ∅ there is a smooth map τβα : Uα ∩Uβ → GL(k,R), such that
for each (x, v) ∈ (Uα ∩ Uβ)× Rk we have

ψβ ◦ ψ−1
α (x, v) = (x, τβα(x)v);

notice that τβα(x) exists for each x ∈ M by the first bullet point, this condition says that the
assignment is smooth as we vary x.

Then E has a unique topology and atlas with smooth transition maps making it a rank k vector bundle
over M with π : E →M a smooth submersion and ψα the local trivialisations.

Proof. The proof can be found in [Lee12, Chapter 10], it is very similar to the proofs that the tangent
and cotangent bundles were manifolds.
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4.2 Some multilinear algebra

In order to proceed further with developing constructions on manifolds we will need to introduce
some notions from (multi)linear algebra. We restrict to the cases of interest for us, though much more
general constructions are possible (e.g. see [Lee12, Chapter 12]):

Definition 43. Given a finite dimensional real vector space, V , a map, F : V × · · · × V → R is
said to be k-multilinear (sometimes called a covariant k-tensor) on V if is linear in each input;
i.e. for v1, . . . , vk, ṽ ∈ V and λ ∈ R we have for each i = 1, . . . , k that

F (v1, . . . , vi−1, vi + λṽ, vi+1, . . . , vk) = F (v1, . . . , vk) + λF (v1, . . . , vi−1, ṽ, vi+1, . . . , vk).

If k = 1 this gives a linear map, if k = 2 this gives a bilinear map. We denote the collection of all
k-multilinear maps as ⊗kV ∗ (sometimes this is written as T k(V ∗)).

Remark 43. We have that ⊗kV ∗ is a vector space under addition and scalar multiplication. Note
that ⊗1V ∗ = V ∗ and by convention we set ⊗0V ∗ = R.

We already have two familiar examples and introduce another:

Example 62. The dot product on Rn, · : Rn ×Rn → R defined by ·(x, y) = x · y is a bilinear map on
Rn; used to define angles and lengths of vectors.

Example 63. The determinant, as a function on Rn2
, is a multilinear map, det : Rn × · · · ×Rn → R

by defining det(v1, . . . , vn) to be the determinant of the matrix with rows given by the v1, . . . , vn; used
to detect linear independence and compute volumes of parallelepipeds spanned by the vectors.

Example 64. Given two covectors, ω, η ∈ V ∗, for a finite dimensional real vector space, V , we can
define the tensor product, ω ⊗ η : V × V → R, to be the bilinear map defined on (v, w) ∈ V × V by
setting ω⊗ η(v, w) = ω(v) · η(w). For example, given the standard basis e1 = (1, 0) and e2 = (0, 1) for
R2 we have that if v, w ∈ R2 then e1 ⊗ e2(v, w) = v1 · w2.

Since the multilinear maps form a vector space we would like to know what a basis for it is. For this
we will first generalise the third example above to higher dimensions:

Definition 44. Given a finite dimensional real vector space, V , with F ∈ ⊗kV ∗ and G ∈ ⊗lV ∗ we
define the tensor product of F and G, denoted F ⊗ G ∈ ⊗k+lV ∗, for v1, . . . , vk, w1, . . . , wl ∈ V by
setting

F ⊗G(v1, . . . , vk, w1, . . . , wl) = F (v1, . . . , vk) ·G(w1, . . . , wl).

Remark 44. One can check that the tensor product operation is bilinear, so (F +G)⊗H = F ⊗H +
G⊗H, and associative, so (F ⊗G)⊗H = F ⊗ (G⊗H), for arbitrary multilinear maps, F,G, and H.

In particular, if ω1, . . . , ωk ∈ V ∗ then we have that ω1 ⊗ · · · ⊗ ωk ∈ ⊗kV ∗ defined for v1, . . . , vk ∈ V
by setting

ω1 ⊗ · · · ⊗ ωk(v1, . . . , vk) = ω1(v1) · · · · · ωk(vk).

With this definition we can now establish a basis:

Proposition 8. Given a finite dimensional real vector space, V , and a basis, {E i}ni=1, for V
∗ a basis

for ⊗kV ∗ is given by
{E i1 ⊗ · · · ⊗ E ik | ij = 1, . . . , n and j = 1, . . . , k},

and thus the dimension of ⊗kV ∗ is nk.
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Proof. See [Lee12, Proposition 12.4]; this is mainly an exercise in keeping track of notation.

Remark 45. It is important to note that not element of ⊗kV ∗ can be written as a simple tensor,
i.e. as ω1⊗· · ·⊗ωk for some ω1, . . . , ωk ∈ V ∗; for instance if V is of dimension 2 with a basis {E1, E∈}
for V ∗ then ⊗2V ∗ = Span{E1, E2} and hence E1 ⊗ E1 + E2 ⊗ E2 is not simple.

We now seek to generalise the properties of the dot product and determinant, for which we introduce
the following notions:

Definition 45. Given a finite dimensional vector space, V , a tensor α ∈ ⊗kV ∗ is said to be:

• symmetric if whenever v1, . . . , vk ∈ V we have

α(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj, vj+1, vk) = α(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, vk)

for each i, j = 1, . . . , k; i.e. swapping entries doesn’t change the output. We denote the collection
of all symmetric k-tensors by SkV ∗.

• alternating if whenever v1, . . . , vk ∈ V we have

α(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj, vj+1, vk) = −α(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, vk)

for each i, j = 1, . . . , k; i.e. swapping entries gives negative the output. We denote the collection
of all alternating k-tensors by ΛkV ∗.

Remark 46. We have that both SkV ∗ and ΛkV ∗ are vector subspaces of ⊗kV ∗. Note that S1V ∗ is
just the zero map, Λ1V ∗ = V ∗, and by convention we set Λ0V ∗ = R. We also observe that if k is
larger than the dimension of V , then ΛkV ∗ is also just the zero map.

We have that the dot product is a symmetric 2-tensor on Rn and the determinant is an alternating
n-tensor on Rn. We now introduce maps that allow us to turn arbitrary tensors into symmetric and
alternating tensors:

Definition 46. For σ ∈ Sym(k) (bijections from {1, . . . , k} to itself) and α ∈ ⊗kV ∗ we define
σα ∈ ⊗kV ∗ on v1, . . . , vk ∈ V by setting σα(v1, . . . , vk) = α(vσ(1), . . . , vσ(k)). We then have the
symmetrising map

Sym(α) =
1

k!

∑
σ∈Sym(k)

σα ∈ SkV ∗,

and alternating map

Alt(α) =
1

k!

∑
σ∈Sym(k)

sign(σ) · σα ∈ ΛkV ∗,

where sign(σ) is ±1 if σ is composed of an even or odd number of transpositions (swaps) respectively.

Remark 47. If α ∈ SkV ∗ then Sym(α) = α and if β ∈ ΛkV ∗ then Alt(β) = β.

Example 65. If α ∈ ⊗2V ∗ then for v, w ∈ V we have that

Sym(α)(v, w) =
1

2
(α(v, w) + α(w, v)), Alt(α)(v, w) =

1

2
(α(v, w)− α(w, v)).

To conclude this segue into multilinear algebra we introduce a way to combine alternating tensors of
different rank in a manner which generalises the determinant; ultimately allowing us to compute areas
of higher dimensional parallelepipeds:
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Definition 47. Given a finite dimensional real vector space, V , ω ∈ ΛkV ∗, and η ∈ ΛlV ∗, we define
the wedge product of ω and η, denoted by ω ∧ η ∈ Λk+lV ∗, by setting

ω ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η).

Let us briefly try to justify the mysterious factor in front of the alternating map in the definition of
the wedge product. If α, β ∈ Λ1V ∗ = V ∗ then α ∧ β ∈ Λ2V ∗ is given by

α ∧ β = 2Alt(α⊗ β) = α⊗ β − β ⊗ α.

In the special case that V = R2 with α = E1 and β = E2 the dual basis for the standard basis
e1 = (1, 0) and e2 = (0, 1) of R2 we thus have for each v = (a, b) ∈ R2 and w = (c, d) ∈ R2 that

E1 ∧ E2(v, w) = ad− bc = det

(
a c
b d

)
;

and thus the wedge product of the standard dual basis of R2 acts like the determinant! This is more
general and is recorded as one of the following general properties of the wedge product:

Proposition 9. (Properties of the wedge product) Given a finite dimensional real vector space, V ,
tensors, ω, ω̃, η, η̃, ζ, and λ ∈ R. Then we have the following:

1. (ω + λω̃) ∧ η = ω ∧ η + λ(ω̃ ∧ η) and ω ∧ (η + λη̃) = ω ∧ η + λ(ω ∧ η̃); i.e. the wedge product is
bilinear.

2. (ω ∧ η) ∧ ζ = ω ∧ (η ∧ ζ); i.e. the wedge product is associative.

3. If ω ∈ ΛkV ∗ and η ∈ ΛlV ∗ then ω ∧ η = (−1)klη ∧ ω; i.e. the wedge product is anticommutative.

4. If ω1, . . . , ωk ∈ V ∗ and v1, . . . , vk ∈ V then

ω1 ∧ · · · ∧ ωk(v1, . . . , vk) = det((ωj(vi))ij);

where (ωj(vi))ij denotes the matrix with ijth entry ωj(vi).

5. If {E i}ni=1 is a basis for V ∗ then a basis for ΛkV ∗ is given by

{E i1 ∧ · · · ∧ E ik | 1 ≤ i1 < · · · < ik ≤ n},

and thus the dimension of ΛkV ∗ is

(
n
k

)
= n!

k!(n−k)!
.

Proof. See [Lee12, Proposition 14.8 and 14.11]; requires a careful examination of the definitions.

Remark 48. In particular if k is the dimension of V , say n as in the proposition, then ΛnV ∗ is
one-dimensional; e.g. if n = 2 and {E1, E2} is a basis for V ∗, then Λ2V ∗ is spanned by E1 ∧ E2! We
will utilise this fact several times later on in the course.
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4.3 Tensor bundles

We now combine the results of the previous two subsections, specifically to the vector spaces given
by the tangent spaces to a manifold, to form the following vector bundles via the vector bundle chart
lemma:

Definition 48. Given a manifold, M , we define the:

• covariant k-tensor bundle ⊗kT ∗M =
⊔

x∈M ⊗kT ∗
xM .

• symmetric k-tensor bundle SkT ∗M =
⊔

x∈M SkT ∗
xM .

• alternating k-tensor bundle ΛkT ∗M =
⊔

x∈M ΛkT ∗
xM .

Each comes equipped with a natural projection map to M .

Remark 49. We have Λ1T ∗M = T ∗M , Λ0T ∗M = M × R (so sections are just smooth functions on

M), and if M is of dimension n then ΛkT ∗M is a rank

(
n
k

)
bundle. In particular ΛnT ∗M is rank 1.

We will study sections of these bundles, first to introduce geometry to manifolds (namely notions of
length and angles), second to introduce appropriate higher dimensional objects for integration, and
finally to introduce the notion of orientations.

4.4 Riemannian metrics

Here we briefly introduce a notion of geometry on our manifolds, further study of which could consist
of a first course in Riemannian geometry. In order to define lengths and angles in Euclidean space
one relies on the dot product, which we saw was a symmetric 2-tensor on Rn. The dot product also
has the feature that it assigns a vector to have length zero if and only if it is the zero vector, i.e. it is
positive definite. We now introduce a notion of smoothly varying dot or inner product on a manifold
in the same way:

Definition 49. A Riemannian metric on a manifold, M , is a section, g ∈ Γ(S2T ∗M), that is
positive definite on each fibre; i.e. for each x ∈M we have that gx(v, v) = 0 if and only if v = 0 ∈ TxM .
A Riemannian manifold is a pair (M, g) where M is a manifold and g is a Riemannian metric
on M .

Remark 50. The terminology ‘metric’ is no in the sense of metric spaces, though it is related as we
will see shortly.

Remark 51. By relaxing the positive definite assumption to simply non-degenerate, one can define
the notion of a pseudo-Riemannian metric. A special case of such metrics on 4-manifolds is
given by the Lorentzian metrics, which are central objects of study in general relativity.

Locally in coordinates we can express a Riemannian metric, g, in the form

g =
n∑

i,j=1

gij dx
i ⊗ dxj

where (gij)ij is a symmetric positive definite matrix. We now look at some examples:
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Example 66. On Rn the standard metric is given by

g =
n∑

i,j=1

δij dx
i ⊗ dxj =

n∑
i=1

dxi ⊗ dxi = (dx1)2 + · · ·+ (dxn)2.

Thus given x ∈ Rn and v, w ∈ TxRn = Rn we have

gx(v, w) =
n∑

i=1

dxi ⊗ dxi(v, w) =
n∑

i=1

vi · wi = v · w,

recovering the dot product!

Example 67. If M ⊂ N is a submanifold, then we can restrict a Riemannian metric on N to
M , which we call the induced metric. For example, restricting the standard metric to the sphere,
Sn ⊂ Rn+1, gives the so called round metric.

Before seeing how a Riemannian metric allows us to define notions of lengths and angles between
tangent vectors, we would first like to know whether they always exist:

Theorem 10. Every manifold admits a Riemannian metric.

Proof. The idea here is to pull back the dot product from Euclidean space in each chart, then patch
this up using a partition of unity. Precisely, given an atlas, {φα : Uα → Vα}α∈A, for M with smooth
transition maps, in each Uα we can define a Riemannian metric, gα, by setting

gαx (v, w) = dxφα(v) · dxφα(w),

for each x ∈ Uα and v, w ∈ TxM ; which is symmetric and positive definite since the dot product is. We
now let {ρα}α∈A be a partition of unity subordinate to the cover {Uα}α∈A and define a Riemannian
metric, g, on M by setting

gx(v, w) =
∑
α∈A

ρα(x)g
α
x (v, w)

for each x ∈ M and v, w ∈ TxM . By the construction of the partition of unity this is well defined,
with only finitely many non-zero terms in the sum at each point, and is both symmetric and positive
definite since the gα are.

While the round metric on the sphere recovers the usual symmetric sphere, we can choose other
Riemannian metrics on the sphere that give it weirder shapes. Morally speaking, the choice of Rie-
mannian metric determines the ‘shape’ of the manifold; thus diffeomorphic manifolds can be given
wildly different shapes. Understanding which Riemannian metrics can be put on a given manifold is
a central focus of the subject of Riemannian geometry. We conclude this subsection by introducing
some geometric notions that can be defined from a given Riemannian metric:

Definition 50. Given a Riemannian manifold, (M, g), we define the:

• norm of v ∈ TxM by |v|g = gx(v, v).

• angle, θ, between v, w ∈ TxM by cos(θ) = gx(v,w)
|v|g |w|g . In particular, if θ = π

2
or equivalently that

gx(v, w) = 0, we say that v and w are orthogonal.

• length, Lg(γ), of a smooth curve γ[a, b] →M by Lg(γ) =
∫ b

a
|γ′(t)|g dt.
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• distance, dg(x, y), between x, y ∈M by

dg(x, y) = inf{L(γ) | γ : [a, b] →M is a smooth curve with γ(a) = x, γ(b) = y},

where we make the convention that dg(x, y) = ∞ if there are no such curves.

The definition of orthogonal vectors allows for the notion of a normal bundle to be defined for
submanifolds of Riemannian manifolds (c.f. homework 3). Also, the notion of the length of a smooth
curve agrees with the familiar notion of length in Euclidean space for by considering the induced
metric on submanifolds of Euclidean space. Finally, the notion of distance turns M into a metric
space; with curves realising the infimum in the definition being an instance of a geodesic or locally
length minimising path between points. One can also ask whether a diffeomorphism between manifolds
preserves the angles/distances on a Riemannian manifold; this leads to the notion of isometry. It
is known, see [Nas56], that every Riemannian manifold can be isometrically embedded into a high
dimensional Euclidean space; namely, there exists an embedding of any Riemannian manifold into
some Euclidean space that preserves lengths of curves (and hence angles between tangent vectors).
Further study of Riemannian manifolds could occupy the entirety of one or more courses of study,
and would rely heavily on the various manifold notions introduced in this course.

4.5 Differential forms

We saw that sections of the cotangent bundle, which we called 1-forms, provided a means to define the
line integral over a smooth curve or equivalently a 1-manifold. By studying sections of the alternating
tensor bundles we now define objects, k-forms, that we will be able to integrate over k-manifolds:

Definition 51. A k-form on a manifold, M , is a section, ω ∈ Γ(ΛkT ∗M). We denote the collection
of k-forms on M by Ωk(M) = Γ(ΛkT ∗M). Given ω ∈ Ωk(M) and η ∈ Ωl(M) we define their wedge
product, ω ∧ η ∈ Ωk+l(M), by setting (ω ∧ η)x = ωx ∧ ηx for each x ∈M .

Remark 52. We have that Ωk(M) is a real vector space under addition and scalar multiplication.
Notice that Ωk(M) is just the zero map for k bigger than the dimension of M . Since Λ0T ∗M =M×R
we have that Ω0(M) = C∞(M), i.e. that 0-forms are smooth functions with f ∧ ω = fω ∈ Ωk(M) for
f ∈ C∞(M) and ω ∈ Ωk(M). Since Λ1T ∗M = T ∗M we also have that Ω1(M) is the set of 1-forms as
defined previously!

In order to work with k-forms locally we first introduce some convenient notation:

Definition 52. Let I(n, k) be the set of k-tuples, I = (i1, . . . , ik), such that 1 ≤ i1 < · · · < ik ≤ n.
For I ∈ I(n, k) we will then denote dxI = dxi1 ∧ . . . dxik where {dxi}ni=1 are coordinate 1-forms.

Remark 53. In [Lee12, Chapter 14] different notation is used where they use an apostrophe to denote
sums over increasing k-tuples.

Using this notation, locally we can write each k-form, ω ∈ Ωk(M), on a n-manifold, M , as:

ω =
∑

I∈I(n,k)

ωIdx
I =

∑
I∈I(n,k)

ωIdx
i1 ∧ · · · ∧ dxik ,

where ωI = ω
(

∂
∂xi1

, . . . , ∂
∂xik

)
if I = (i1, . . . , ik) is a smooth function. Note that this expression

is guaranteed since the basis of ΛkT ∗
xM is provided by increasing wedge products of the coordinate

1-forms at each x ∈M . Let’s see some examples:
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Example 68. On R3 we have that:

• 0-forms are f ∈ C∞(R3).

• 1-forms are of the form fdx+ gdy + hdz for f, g, h ∈ C∞(R3).

• 2-forms are of the form fdx ∧ dy + gdx ∧ dz + hdy ∧ dz for f, g, h ∈ C∞(R3).

• 3-forms are of the form fdx ∧ dy ∧ dz for f ∈ C∞(R3)

• k-forms for k ≥ 4 are all zero!

Just as we defined pullbacks for 1-forms we can extend this to k-forms:

Definition 53. If F :M → N is a smooth map between manifolds, then the pullback of F , denoted
F ∗ : Ωk(N) → Ωk(M), acts on ω ∈ Ωk(N) by letting F ∗ω ∈ Ωk(M) be defined by

(F ∗w)x(v1, . . . , vk) = ωF (x)(dxF (v1), . . . , dxF (vk))

for each x ∈ M and v1, . . . , vk ∈ TxM . We then have that for ω ∈ Ωk(N) and η ∈ Ωl(N) that
F ∗(ω ∧ η) = F ∗ω ∧ F ∗η. Moreover, if F :M → N and G : N → P then (G ◦ F )∗ = F ∗ ◦G∗.

Remark 54. Notice that if f ∈ Ω0(N) = C∞(N) is a 0-form then F ∗f = f ◦ F ∈ C∞(M)

Remark 55. In the special case that M = N = Rn as ΛnT ∗M is 1-dimensional, every n-form or top
dimensional form, ω, is of the form ω = dx1∧· · ·∧dxn and thus for any smooth map F : Rn → Rn

we have by the definition above and the properties of the wedge product that F ∗ω = det(dxF )ω.

We now compute an example:

Example 69. Consider the 2-form ω = dx ∧ dy on R2 and the change to polar coordinates given by
x = r cos(θ), y = r sin(θ). Using the above remark for top dimensional forms we compute that

ω = dx ∧ dy = d(r cos(θ)) ∧ d(r sin(θ)) = rdr ∧ dθ,

showing how ω looks with respect to another choice of coordinates.

4.6 Orientations

The notion of an orientation or direction is familiar in Euclidean space, where we use the standard
basis to impose a global set of coordinate axes with a direction (from negative to positive infinity).
We want to generalise this idea to manifolds, where for example we want the sphere to be oriented (as
it has a consistent inside/outside and or choice of continuous normal) but manifolds like the Möbius
band or Klein bottle to not be oriented (as they do not have a consistent inside/outside and or choice
of continuous normal). To capture this notion we will need some more linear algebra in order to
compare bases of a given vector space:

Definition 54. Given a real vector space, V , of dimension n we say that two bases E = {E1, . . . , En}
and F = {F1, . . . , Fn} for V are consistent if the linear map L : V → V taking the basis E to the
basis F has positive determinant. This forms an equivalence relation on the set of bases of V and we
say that a choice of an equivalence class of bases is an orientation for V .
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Remark 56. Precisely, the matrix representation, L = (Lij)ij, of L : V → V is such that Fi =∑n
j=1 LijEi and det(L) > 0. In the case that n = 0 an orientation for V is simply a choice of ±1.

Since every vector space of dimension n is isomorphic to Rn, an orientation always exists by the
following example.

We have familiar examples in Euclidean space:

Example 70. On Rn we have the standard orientation given by the equivalence class of bases
consistent with the standard basis {e1, . . . , en}. For n = 0 this is a choice of ±1, for n = 1 this simply
gives the standard positive direction for the x-axis, for n = 2 this gives the anti-clockwise Cartesian
axes, and for n = 3 this gives the axes determined by the ‘right-hand rule’.

We now provide a connection between orientations of vector spaces and top dimensional alternating
tensors:

Proposition 10. Given a real vector space, V , of dimension n, every non-zero alternating n-tensor,
ω ∈ ΛnV ∗ \ {0}, determines an orientation, Oω, of V as follows:

• if n = 0 then Oω = +1 if ω > 0 and Oω = −1 if ω < 0.

• if n ≥ 1 then Oω is the set of bases {E1, . . . , En} for V such that ω(E1, . . . , En) > 0.

We call such an ω an oriented n-covector. Any two oriented n-covectors determine the same
orientation if and only if they are positive multiples of eachother.

Proof. The case n = 0 follows by noting that then ΛnV ∗ = R and thus ω ∈ R \ {0}. For the case
n ≥ 1 we simply need to show that the definition of Oω provides an equivalence class. We note that
if L : V → V is linear and v1, . . . , vn ∈ V then

ω(Lv1, . . . , Lvn) = det(L)ω(v1, . . . , vn);

this follows by the properties of the wedge product and multilinearity of ω (which one can check on
basis elements). Thus if two bases E = {E1, . . . , En} and F = {F1, . . . , Fn} for V are related by a
linear map L : V → V then

ω(F1, . . . , Fn) = ω(LE1, . . . , LEn) = det(L)ω(E1, . . . , En);

and thus E and F are consistent if and only if ω gives them the same sign; i.e. if and only if they lie
in the same equivalence class. The final statement thus follows as positive multiples do not affect the
sign.

Thus we see that choosing an orientation for a vector space is equivalent to choosing a non-zero top
dimensional alternating tensor. We now apply this to tangent spaces in order to define orientations
on manifolds:

Definition 55. Given an n-manifold, M , a pointwise orientation is a choice of orientation for
each tangent space. For a given pointwise orientation, we say that local vector fields, {Ei}ni=1, forming
a basis of the tangent spaces at each point in their domain are an oriented local frame if the basis,
{Ei|x}ni=1, lies in the orientation of TxM for each x in their domain (i.e. if they lie in the equivalence
class given by the pointwise orientation). A pointwise orientation is thus said to be continuous if
each point of M lies in the domain of an oriented local frame. We say that M is orientable if there
exists a continuous pointwise orientation, simply orientation for M , and that M is non-orientable
if such an orientation does not exist.
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Remark 57. While local vector fields that form a basis at each point always exist, since the tangent
bundle is locally trivial (as it is a vector bundle), the choice of pointwise orientation could vary wildly
from point to point. The notion of an oriented local frame ensures that the assignment of pointwise
orientations are locally consistent with one another. Note that we can thus always find an open set in
which is orientable, but being orientable ensures that these oriented local frames patch up continuously
on the entire manifold, so that the consistency of the pointwise orientation is global.

Let’s check some easy examples:

Example 71. Every 0-manifold is orientable, we just assign a choice of ±1 to each point which is
vacuously continuous.

Example 72. Euclidean space, Rn, is orientable since we can take the standard orientation (equiva-
lence class of bases consistent with the standard basis) which is consistent with the basis given by the
coordinate vector fields { ∂

∂xi
}ni=1.

Example 73. With the above example in mind, any manifold with an atlas with one chart is orientable.

In principle, whether a given manifold is oriented or not is hard to check. We will now discuss two
more equivalent definitions or orientability which are in practice often easier to verify:

Proposition 11. Given an n-manifold, M , a nowhere vanishing n-form, ω ∈ Ωn(M), determines an
orientation for M . Conversely, an orientation for M determines a nowhere vanishing n-form. We
call such a nowhere vanishing ω an orientation form.

Proof. By the above proposition, ω defines a pointwise orientation forM (since ωx is an orientation n-
covector on TxM for each x ∈M). This is continuous since locally ω takes the form ω = fdx1∧· · ·∧dxn
for some f ∈ C∞(U) \ {0}. As each point of M lies in the domain of a chart, ω thus determines an
orientation for M (precisely here we use the fact that ω takes either a positive or negative sign, but
not both, on each connected component of M here).

For the converse we refer to [Lee12, Proposition 15.5]; the core idea is to take a positive orientation
n-covector on each tangent space and patch this up to give an orientation form on the manifold using
partitions of unity.

We thus see that being oriented is equivalent to the existence of an orientation form. This allows us
to check several examples:

Example 74. We can use the proposition to show that the n-spheres are orientable by defining an
n-form on Rn+1 that restricts to Sn. For n = 1 we can let ω = x1dx

2 − x2dx
1 and for n = 2 we can

define ω = x1dx
2 ∧ dx3 − x2dx

1 ∧ dx3 + x3dx
2 ∧ dx3. A similar construction works for general n ≥ 3.

Example 75. As another way to see that Euclidean space, Rn, is orientable we can simply consider
ω = dx1 ∧ · · · ∧ dxn.

Example 76. Any parallelisable manifold, and hence any Lie group, is orientable since if TM is
trivial, then T ∗M is also. We can thus consider linearly independent 1-forms, ω1, . . . , ωn and form an
orientation form by considering their wedge product ω1 ∧ · · · ∧ ωn (notice that this is non-zero since
the 1-forms are linearly independent).

We can also characterise orientability in terms of an atlas:
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Proposition 12. Given a smooth manifold, M , if there is an atlas whose transition map’s Jacobians
have positive determinant at each point, then M is orientable. Conversely, an orientation for M
ensures the existence of such an atlas. We call such an atlas an orientation atlas.

Proof. The coordinate vector fields provide a local oriented frame and hence determine a pointwise
orientation for M at each point of the domain of a chart. As seen in homework 2, whenever the
domains of two charts overlap, the linear map relating coordinate vector fields in each set of coor-
dinates is provided by the Jacobian of the transition map for the charts. If this is assumed to have
positive determinant, the pointwise orientation provided by each chart agrees. This then determines
a continuous pointwise orientation for M as they agree on the overlaps, hence M is continuous.

Conversely, if M is oriented then we can consider local orientated frames provided by the coordinate
vector fields. By potentially composing the chart with a reflection in a coordinate axes we can always
ensure that this g frame is oriented, this then ensures that on the overlaps between the charts their
transition maps have positive Jacobian determinant, thus providing an orientation atlas.

We can use this characterisation to show the following:

Lemma 6. Any manifold covered by an atlas with smooth transition maps consisting of two charts is
orientable.

Proof. The determinant of the transition map’s Jacobian must have a fixed sign on the overlap of
the domains of the charts (since the transition map is a diffeomorphism). By potentially composing
one of the charts with a reflection in a coordinate axes we can always ensure that this determinant is
positive, and hence determine an orientation atlas for the manifold.

This immediately gives some examples of orientable manifolds and some ideas about non-orientable
manifolds:

Example 77. The n-spheres, Sn, have atlases with smooth transition maps provided by stereographic
projection from the north and south pole, and hence are orientable.

Example 78. One can find an atlas with smooth transition maps with only two charts for the n-torus,
T n, (I encourage you to think about what this would look like) and hence is orientable.

Remark 58. By the above discussions, any non-orientable manifold must have an atlas with smooth
transition maps consisting of at least three charts!

We now conclude this section with some further remarks:

Remark 59. Any open subset of an oriented manifold is oriented; one can see this by any of the three
characterisations provided above.

Example 79. On homework 4 you will show that the product of manifolds is orientable if and only if
each of the factors is orientable, as well as show explicitly that certain real projective spaces are and
are not orientable (which also shows that the Möbius band and Klein bottle are non-orientable by the
same reasoning).

5 Integration on manifolds

By combining the various constructions on manifolds in the previous section, we are able to now
properly define integration. Just as we integrated 1-forms along curves (which are 1-dimensional), we
will integrate n-forms on n-dimensional manifolds.
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5.1 Integration of forms

We first observe that there is no coordinate independent way in which one can define the integral,
even in Euclidean space. To see this one can consider integrating the function identically equal to
one on any closed set. Integrating this function should return the volume of this set, but by rescaling
(i.e. choosing different coordinates on Euclidean space) this volume value changes. On the other hand,
we saw that 1-forms could be integrated in a coordinate independent way. To generalise this to higher
dimensional spaces we make use of n-forms on n-dimensional manifolds; we observe that heuristically
these should be good candidates for objects to integrate since, by their multilinearity, they respect the
scaling and orientation of the parallelepiped spanned by n-vectors (which the n-form assigns a value
which one can think of as the volume).

We will first make the definition and then check why we require its hypotheses and make sure that it
is well defined:

Definition 56. Given an orientable n-manifold, M , and ω ∈ Ωn(M) with compact support, an ori-
entation atlas, {φα : Uα → Vα}α∈A, for M with smooth transition maps, and a partition of unity,
{ρα}α∈A, subordinate to the domains of the charts. If supp(ω) ⊂ Uα for some α ∈ A then we define

Iα(ω) =

∫
M

ω =

∫
Vα

fα ◦ φ−1
α (x) dx,

as an integral in Rn, where ω = fαdx
1 ∧ · · · ∧ dxn for f ∈ C∞(M) with supp(fα) ⊂ Uα. In general,

we define the integral of ω on M by setting∫
M

ω =
∑
α∈A

Iα(ραω) =
∑
α∈A

∫
M

ραω.

Remark 60. The integral is well defined since the sum is locally finite and only finitely many of the
domains of the charts meet the support of ω since it is assumed to be compact. One can extend the
definition of integral to include forms that are not compactly supported under appropriate hypotheses,
but we will not do this here.

Remark 61. The necessity of the requirement that the manifold be oriented will be made clear shortly.
We note that the value of the integral explicitly depends on the orientation that is chosen for the
manifold. However, one can define the integral in various ways for manifolds that are not oriented,
but we will not address them here. For instance one could consider integrating on the ‘oriented double
cover’ (see [Lee12, Chapter 15] for a definition) of the manifold and halving the value. Alternatively,
one can use ‘densities’ as shown in [Lee12, Chapter 16].

While the definition of the integral is well defined for a given atlas and partition of unity, it is not
clear that it is independent of these choices; we will now show however that this is in fact the case.

Firstly, if we have another orientation atlas, {ϕβ : Uβ → Vβ}β∈B, for M (giving the same orientation)
with smooth transition maps then we want to check that if supp(ω) ⊂ Uα ∩ Uβ then Iα(ω) = Iβ(ω)
(i.e. that the definition is independent of the choice of chart!). As usual we let {dxi}ni=1 and {dyi}ni=1

be coordinate 1-forms for Uα and Uβ respectively, which are related by the Jacobian of the transition
map φα ◦ ϕ−1

β . We then have that

ω = fαdx
1 ∧ · · · ∧ dxn = fβdy

1 ∧ · · · ∧ dyn,
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and so we see that fβ = ∆αβfα if we write ∆αβ for the determinant of the Jacobian of the transition
map (notice that this function never vanishes and is positive since the atlases determine the same
orientation). We then compute that

Iβ(ω) =

∫
Vβ

fβ ◦ ϕ−1
β (y) dy =

∫
Vβ

∆αβ(y)(fα ◦ φ−1
α ) ◦ (φα ◦ ϕ−1

β )(y) dy,

which by the standard change of variables formula yields,

Iβ(ω) =

∫
Vα

∆αβ(y)

|∆αβ(y)|
fα ◦ φ−1

α (x) dx = Iα(ω),

as desired. Notice that in the final line we used that fact that ∆αβ > 0 since the atlases yield the same
orientation for M ; this shows the necessity of the orientability of M in the definition of integration!
There is thus no ambiguity about integrating forms that are supported in the overlaps of charts, we
will now use this to show that the definition of the integral is globally independent of the choice of
atlas and partition of unity.

As we remarked when defining partitions of unity, if {ρβ}β∈B is a partition of unity subordinate to the
cover {Uβ}β∈B then {ραρβ}α∈A,β∈B is a partition of unity subordinate to the cover {Uα ∩ Uβ}α∈A,β∈B.
Noting that if supp(ω) ⊂ Uα then we can write

Iα(ω) =
∑
β∈B

Iα(ρβω),

we thus have for a general compactly supported ω ∈ Ωn(M) that∑
α∈A

Iα(ραω) =
∑

α∈A,β∈B

Iα(ραρβω) =
∑

α∈A,β∈B

Iβ(ραρβω) =
∑
β∈B

Iβ(ρβω);

where in the second inequality we used the fact that supp(ραρβω) ⊂ Uα ∩ Uβ which ensures that
Iα(ραρβω) = Iβ(ραρβω). The above shows that the integral is thus well defined independently of the
choice of atlas or the choice of partition of unity (one can simply take the second atlas the same as
the first and choose a different partition of unity for the latter case).

With the definition established, let us now look at some examples:

Example 80. For a 0-form or smooth function, f , on a 0-manifold, M , we simply have that∫
M

f =
∑
x∈M

±f(x),

where only finitely many terms are non-zero and the choice of the ±1 factor is precisely the orientation
assigned to each point of M .

Example 81. If γ : [a, b] → M is a smooth curve such that γ([a, b]) is an embedded 1-manifold,
then this definition agrees with our previous definition of the line integral of a 1-form (see [Lee12,
Proposition 16.8] for details).

Example 82. If M = (a, b) and ω = dx then
∫
M
ω =

∫ b

a
dx = b − a, the length of (a, b) as we

expect! Similarly, integrating dx ∧ dy on a bounded open subset of R2 gives the area and integrating
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dx ∧ dy ∧ dz on a bounded open subset of R3 gives the volume. More generally, if ω is an orientation
form for a compact manifold M then we define the volume of M to be Vol(M) =

∫
M
ω. We can then

integrate f ∈ C∞(M) against this form and write
∫
M
f dV =

∫
M
fω; this is at odds with the notation

we will use for the exterior derivative of forms later, so we will avoid this here and only mention that
this is common notation in Riemannian geometry using a Riemannian volume form (see [Lee12,
Chapter 15]).

We also record some properties of the integral, the first two follow from the corresponding result for
integration in Euclidean space and the final two follow by examination of the definitions:

Proposition 13. (Properties of the integral) Given oriented n-manifolds M,N , compactly supported
n-forms ω, η ∈ Ωn(M), and λ ∈ R. Then we have the following:

1.
∫
M
(ω + λη) =

∫
M
ω + λ

∫
M
η.

2. If −M denotes M equipped with its opposite orientation then
∫
−M

ω = −
∫
M
ω.

3. If ω is an orientation form for M , then
∫
M
ω > 0.

4. If F : N → M is an orientation preserving/reversing diffeomorphism (see homework 4) then∫
N
F ∗ω = ±

∫
M
ω.

As an example of the above we can compute the following example:

Example 83. If f : (0, 2π) → S1 is defined by f(θ) = (cos(θ), sin(θ)) then this is an orientation
preserving diffeomorphism onto its image (which misses only one point of S1). If ω = x1dx

2 − x2dx
1

on S1, so that f ∗ω = dθ, then we see that∫
S1\{pt}

ω =

∫ 2π

0

f ∗ω =

∫ 2π

0

dθ = 2π.

This says that the length of the circle minus a point is 2π with respect to the usual volume form. Of
course adding a point will not affect the value of the integral and so the length of the circle is 2π with
this volume form, as expected! One can perform similar calculations to find the surface area of the
sphere (see homework 4).

5.2 Manifolds with boundary

One thing that the fundamental theorem of calculus as well as the Green, Gauss, and Kelvin–Stokes
theorems all have in common is that, via integration, they relate the rate of change, i.e. derivative, of
some quantity on the ‘interior’ of some space, to the quantity itself on the ‘boundary’ of this space.
We want to generalise this idea to manifolds, and in doing so derive a result that subsumes all of those
previously mentioned. To do this however, we will first need to make sense of what the ‘boundary’ of
a manifold should be.

In the case of a closed interval, [a, b], (to which we may apply the fundamental theorem of calculus)
we have a good notion that the ‘interior’ region is the open interval, (a, b), and the ‘boundary’ is
the endpoints {a} ∪ {b}; notice in particular that the boundary is a manifold of one dimension less
than the interior here. Another example is provided by the closure of the n-dimensional hyperbolic
space, Hn

= {x ∈ Rn |xn ≥ 0, which has an ‘interior’ formed by Hn and a ‘boundary’ given by
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Rn−1 × {0} = {x ∈ Rn |xn = 0} which we will denote by ∂Hn
. Finally, the closed n-dimensional

unit ball, B
n
= {x ∈ Rn | |x| ≤ 1}, has an ‘interior’ formed by Bn itself and a ‘boundary’ formed by

Sn−1. Notice that the first and last of these examples each is comprised of regions that can locally be
smoothly deformed to look like regions in Hn

.

The problem with trying to apply the theory we have developed so far however lies in the fact that
closed intervals are not manifolds; in particular half open intervals are not homeomorphic to open

intervals, but are homeomorphic to open subsets of H1
! With this in mind we extend our definition

of manifold to include a notion of boundary by changing the ‘model’ space, namely Euclidean space,
to the closure of hyperbolic space as follows:

Definition 57. An n-dimensional topological manifold with boundary or topological n-
manifold with boundary is a Hausdorff, second countable topological space for which every point
belongs to an open set homeomorphic to an open subset of Hn

. A homeomorphism φ : U → V
between open subsets U ⊂ M and V ⊂ Hn

is a chart on M , and an atlas is a collection of charts
whose domains cover M . An n-dimensional smooth manifold with boundary, hereafter an
n-manifold with boundary, is a topological n-manifold with boundary admitting an atlas, with
smooth transition maps. We then distinguish the following sets:

• The interior of M is M o = {x ∈M |φ(x) ∈ Hn for every chart in the atlas of M}.

• The boundary of M is ∂M = {x ∈M |φ(x) ∈ ∂Hn
for every chart in the atlas of M}.

Remark 62. The notion of interior and boundary for a manifold with boundary are well defined as
one can show that if the image of some point lies in Hn or ∂Hn

for some chart, it lies in it for every
chart (see [Lee12, Theorem 1.37]). We then have that both M = M o ∪ ∂M and M o ∩ ∂M = ∅.
Moreover, M o is an n-manifold, and ∂M , whenever it is not empty, is an (n − 1)-manifold in our
original sense (from which it follows that a manifold with boundary is a manifold if and only if it has
empty boundary and moreover that ∂(∂M) = ∅)!

We can now verify our motivating examples discussed above are indeed manifolds with boundary:

Example 84. As a sanity check, we indeed see that n-dimensional hyperbolic space, Hn
, is an n-

manifold with boundary by taking the one chart atlas of the identity map. As expected we have (Hn
)o =

Hn and ∂Hn
= Rn−1 × {0} = Rn−1.

Example 85. Any closed interval, [a, b], is then a 1-manifold with boundary by taking charts mapping

that half open intervals [a, b) and (a, b] to H1
. We then see that [a, b]o = (a, b) and ∂[a, b] = {a}∪ {b}.

With the above, one can actually now (e.g. see [Vir13] or [Lee12, Problem 15-13]) classify all 1-
manifolds with boundary up to diffeomorphism as one of R, S1, [a, b], (a, b), [a, b), (a, b] (notice that a
or b can be infinity here).

Example 86. The closed n-dimensional unit ball, B
n
, is an n-manifold with boundary by, for example,

taking charts that ‘straighten’ out the boundary (we will not do this too precisely here but it is worth
thinking about what these maps look like). We then see that (B

n
)o = Bn and ∂B

n
= Sn−1.

All of the notions that we have developed for manifolds so far carry over, with appropriate modifica-
tions, to manifolds with boundary; for example, this can be seen explicitly in each instance in [Lee12]
where manifolds with boundary are discussed at the same time throughout. One thing that we want
to examine precisely is the way in which orientations are induced on the boundary:
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Proposition 14. An orientation for a manifold with boundary determines an orientation, called the
Stokes or induced orientation, for its boundary.

Proof. Consider an n-manifold with boundary, M , which we can assume is such that ∂M ̸= ∅; else
there is nothing to prove. Given an orientation atlas, {φα : Uα → Vα}α∈A, for M we produce an atlas

for ∂M by restricting the atlas for M to the boundary, let us denote this atlas by {φ̃α : Ũα → Ṽα}α∈A
(so that Ũα = Uα ∩ ∂M for each α ∈ A). We will now show that this is an orientation atlas for ∂M ,
and call the orientation it determines the Stokes or induced orientation.

For fixed α, β ∈ A we denote f = φα ◦ φ−1
β and f̃ = φ̃α ◦ φ̃−1

β (i.e. the restriction of f to ∂Hn
). Since

f is a diffeomorphism, it must map ∂Hn
into itself and thus the inward pointing normal, ∂

∂xn
, must

remain inward pointing when mapped by the differential of f ; i.e. we must have both that ∂fn
∂xn

> 0
and fn(x1, . . . , xn−1, 0) = 0 if f = (f1, . . . , fn). We then compute that the Jacobian, Jf , of f along
∂Hn

is of the form

Jf =

(
Jf̃ ?

0 ∂fn
∂xn

)
,

which is block upper triangular and so det(Jf ) = det(Jf̃ )
∂fn
∂xn

. Since both det(Jf ) > 0 (since we have

an orientation atlas for M) and ∂fn
∂xn

> 0 as argued above, we must have that det(Jf̃ ) > 0 also. Since
the choice of α, β ∈ A was arbitrary, this shows that the restriction of an orientation atlas for M to
∂M provides an orientation atlas, and hence an orientation, for ∂M as desired.

Another way to find the induced orientation for the boundary is by the use of the following:

Definition 58. Given a manifold with boundary, M , X ∈ Γ(TM), and ω ∈ Ωn(M) we define the
interior product of ω with X to be ιX : Ωn(M) → Ωn−1(M) defined for Y1, . . . , Yn−1 ∈ Γ(TM) by
setting ιXω(Y1, . . . , Yn−1) = ω(X, Y1, . . . , Yn−1) (i.e. place X in the first entry). We then obtain the
Stokes or induced orientation form for ∂M by considering ινω were ω is the orientation form for
M and ν is an outward pointing normal vector field.

Remark 63. Notice that this gives the expected orientations for the boundary of a closed interval [a, b],
assigning +1 to {b} and −1 to {a} in agreement with the fundamental theorem of calculus; i.e. we
have that

∫
[a,b]

df = f(b) − f(a) =
∫
{a}∪{b} f for each f ∈ C∞(R) which can be seen as the simplest

case of the generalised Stokes theorem we will prove soon!

We can use this to insert the outward pointing normal to a manifold with boundary as another
way to recover the induced orientation, we show this on some examples but one can consult [Lee12,
Proposition 15.24] for a proof:

Example 87. If we consider the standard orientation form dx1 ∧ · · · ∧ dxn for Hn
and the outward

pointing normal given by − ∂
∂xn

we get the induced orientation on ∂Hn
as ι− ∂

∂xn
(dx1 ∧ · · · ∧ dxn) =

(−1)ndx1∧· · ·∧dxn−1 (where we get n−1 multiples of −1 from swapping indices and another from the
negative sign on the normal). Notice that if n is even then the orientation form is the same (omitting
dxn), while if n is odd then the orientation ‘flips’.

Example 88. The standard orientation form dx1 ∧ dx2 for R2 restricts to an orientation form on

B
2
which has outward pointing normal given by ν = x1

∂
∂x1

+ x2
∂

∂x2
. We then see that by interior

multiplication the induced orientation form for the boundary, S1, is ιν(dx
1 ∧ dx2) = x1dx

2 − x2dx
1

as expected. The same idea goes through for general n also to deduce an orientation form on Sn−1,
providing yet another proof that the spheres are oriented!
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5.3 The exterior derivative on forms

In order to continue developing the machinery to develop a general result encompassing our classical
theorems from calculus, we need to develop a notion of rate of change, i.e. a ‘derivative’, for differential
forms. For smooth functions, namely 0-forms, we have a natural candidate for the derivative, namely
the differential; as we have already noted the fundamental theorem of calculus follows in this case by
integrating over a closed interval. We will state the definition as a theorem and discuss the notion as
we establish the result:

Theorem 11. (The exterior derivative on forms) Given an n-manifold with boundary, M , there is
a unique family of linear maps, denoted d : Ωk(M) → Ωk+1(M) for each k, called the exterior
derivative satisfying the following properties:

1. If f ∈ Ω0(M) then df ∈ Ω1(M) is the differential of f .

2. If f ∈ Ω0(M) and ω ∈ Ωk(M) then d(fω) = df ∧ ω + fdω.

3. d2 = d ◦ d is the zero map, i.e. d2ω = 0 for each ω ∈ Ωk(M).

4. If U ⊂M is open then (dω)|U = d(ω|U).

We first make some remarks on the definition before proving the result, from which the precise
definition of the exterior derivative will become clear:

Remark 64. The first property just states that the exterior derivative of a smooth function is the
differential of this function. The second property can been seen as a sort of product rule for the
exterior derivative; indeed it does imply one for general forms as we will state after the proof. The
third property, as we will see in the proof, is related to the fact that partial derivatives commute and,
as we will later see from Stokes’ theorem, that the boundary of the boundary of a manifold is empty
(since the boundary of a manifold with boundary is a manifold). Finally, the fourth property ensures
that the exterior derivative is a local definition, as we expect for the derivative of a function depending
only on an arbitrarily small neighbourhood of a point.

Proof. We first show that, if the exterior derivative exists then it is uniquely determined. By the
fourth property it suffices to check the uniqueness of the exterior derivative in the domains of charts.

We will use the claim that if k ≥ 1 and f1, . . . , fk ∈ Ω0(M) then it holds that

d(df1 ∧ · · · ∧ dfk);

which follows by induction on k as we now show. The base case k = 1 of the claim follows from
property two of the exterior derivative. Assuming the claim holds up to k − 1 we see by property
three that

d(f1df2 ∧ · · · ∧ dfk) = df1 ∧ · · · ∧ dfk + f1d(df2 ∧ · · · ∧ dfk) = df1 ∧ · · · ∧ dfk,

and thus, by property two, the claim holds by taking the exterior derivative of both sides of the above
relation.

Locally we express each ω ∈ Ωk(M) in the form ω =
∑

I∈I(n,k) ωIdx
I and thus, by the linearity of the

exterior derivative, the above claim, and property three we see that

dω =
∑

I∈I(n,k)

dωI ∧ dxI ;
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thus the exterior derivative is unique provided it exists! We now show the existence of the exterior
derivative by using the above formula as a local definition on each differential form (we of course now
need to check that this is well defined and satisfies the desired properties).

Let us first show that the above local definition satisfies the first three properties; we note that the
linearity of the definition is clear since the differential of smooth functions is linear. For the first
property, if f ∈ Ω0(M) then the above definition clearly implies that df is the differential of f as the
local representation of f it simply itself!

For the second property, by the product rule for the differential of smooth functions if we have
f ∈ Ω0(M) and ω ∈ Ωk(M) then locally for each I ∈ I(n, k) we have

d(fωIdx
I) = d(fωI) ∧ dxI = df ∧ (ωIdx

I) + fdωI ∧ dxI ;

the second property then follows by summing over all I ∈ I(n, k) by the linearity of the local definition.

For the third property, for each I ∈ I(n, k) we may compute the differential of the component functions
as dωI =

∑n
j=1

∂ωI

∂xj
dxj and thus

d2(ωIdx
I) = d

(
n∑

j=1

∂ωI

∂xj
dxj ∧ dxI

)
=

n∑
i,j=1

∂ωI

∂xi∂xj
dxi ∧ dxj ∧ dxI .

By summing only over terms i < j and using the fact that partial derivatives commute we may write
the above as

d2(ωIdx
I) =

n∑
i<j,i,j=1

(
∂ωI

∂xi∂xj
− ∂ωI

∂xj∂xi

)
dxi ∧ dxj ∧ dxI = 0;

the third property then follows by summing over all I ∈ I(n, k) by the linearity of the local definition.

Having shown that the first three properties hold using the local definition, we now extend this
definition to all of M and check it is well defined. Given ω ∈ Ωk(M) and x ∈ M we define dω(x) =
d(ω|U)(x) where U is the domain of any chart containing x; namely, we use the above local definition.

If x ∈ U ∩ Ũ for the domains of two charts, then by the uniqueness of the definition on charts shown
at the beginning of the proof we conclude that

d(ω|U)(x) = d(ω|U∩Ũ)(x) = d(ω|Ũ)(x);

thus the above definition is well defined on all of M and satisfies the fourth property by the way in
which we have defined it. Since the first three properties hold for the local definition, they now hold
with our global definition; this concludes the proof.

Remark 65. An alternate manner in which one can check that the local definition of the exterior
derivative extends to a well defined global definition is by showing that the formula is invariant under
changes of coordinates.

We now state some properties of the exterior derivative which one can check directly from the defini-
tion:

Proposition 15. (Properties of the exterior derivative) Given a manifold with boundary, M , then we
have the following:
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1. If ω = df for some f ∈ Ω0(M) then dω = 0 (i.e. every exact form is closed).

2. If ω ∈ Ωk(M) and η ∈ Ωl(M) then d(ω∧ η) = dω∧ η+(−1)kω∧dη (i.e. the product rule holds).

3. If F : N → M is a smooth map between manifolds and ω ∈ Ωk(M) then F ∗(dω) = d(F ∗ω)
(i.e. the exterior derivative commutes with the pullback).

We conclude this subsection by analysing the exterior derivative on R3, making clear the connections
to previous notions from calculus:

Example 89. On R3 we have that:

• If f ∈ Ω0(M) then df = ∂f
∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz ∈ Ω1(M) is the usual differential of f ; notice that

the coefficient functions are the entries of the gradient of the function f !

• If ω = fdx+ gdy + hdz ∈ Ω1(M) then one can compute that

dω = df∧dx+dg∧dy+dh∧dz =
(
∂g

∂x
− ∂f

∂y

)
dx∧dy+

(
∂f

∂x
− ∂h

∂z

)
dz∧dx+

(
∂h

∂y
− ∂g

∂z

)
dy∧dz;

notice that the coefficient functions are (up to permutation) the entries of the curl of the vector
field (f, g, h)!

• If ω = fdx ∧ dy + gdz ∧ dx+ hdy ∧ dz ∈ Ω2(M) then one can compute that

dω =

(
∂f

∂z
+
∂g

∂y
+
∂h

∂x

)
dx ∧ dy ∧ dz;

notice that the coefficient is (up to a permutation) the divergence of the vector field (f, g, h)!

The above example shows that in R3 the exterior derivative encodes the notions gradient, curl, and
divergence; this was one of the original motivations to introduce differential forms, as a coordinate
free definition that encompasses the main properties of calculus in Euclidean space.

5.4 Stokes’ theorem and its applications

We are now ready to combine the notions introduced in the previous three subsections in order to
establish the celebrated generalised Stokes’ theorem, providing a deep connection between the notions
of boundary and derivative with profound applications:

Theorem 12. (Stokes’ theorem) Given an oriented n-manifold with boundary, M , and a compactly
supported ω ∈ Ωn−1(M) then ∫

M

dω =

∫
∂M

ω.

While the theorem is concise to state and, as we will see shortly, not too difficult to prove, this is only
because of the large amount of preliminaries required to make it so. Even the statement warrants
some clarifications:
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Remark 66. It is implicitly understood that ∂M is equipped with the Stokes/induced orientation from
M (hence the name) and that ω on the right hand side integral is really its restriction to ∂M (or ι∗∂Mω
where ι∂M : ∂M → M is the inclusion/embedding of ∂M into M . Whenever ∂M = ∅ (i.e. if M is
an oriented n-manifold) then the right hand side is interpreted as zero. Finally, if M is of dimension
one then the right hand side integral is a sum; in particular, this implies the fundamental theorem of
calculus for line integrals as we will see later.

Proof. We will proceed by first showing that the conclusion of Stokes’ theorem holds whenever ω is
supported in the domain of a chart, and then use a partition of unity to patch up and obtain the
conclusion globally. To this end we fix an atlas, {φα : Uα → Vα}α∈A, on M with smooth transition
maps and a partition of unity, {ρα}α∈A, subordinate to the cover {Uα}α∈A.

Now suppose that φ : U → V is a chart on M , so that V ⊂ Hn
is open, and suppose that ω is

compactly supported in U . Since then ω ∈ Ωn−1(U) we may express

ω =
n∑

i=1

ωidx
1 ∧ . . . dxi−1 ∧ d̃xi ∧ dxi+1 ∧ · · · ∧ dxn,

for ωi ∈ C∞(U) with supp(ωi) ⊂ U for each i = 1, . . . , n and where d̃xi means we omit this term

in the wedge product. By definition of the integral, and denoting d̃xi to omit the integral in the ith
coordinate, we then have that∫

∂M∩U
ω = (−1)n

n∑
i=1

∫
∂Hn∩V

(ωi ◦ φ−1)(x1, . . . , xn−1, 0)dx1 . . . dxi−1d̃xidxi+1 . . . dxn;

where the factor of (−1)n appears from the induced orientation on ∂Hn
. Since xn vanishes identi-

cally on ∂Hn
the only potentially non-zero term in the above sum appears when we omit dxn (since

integrating with respect to the nth coordinate direction thus gives zero), and therefore we have that∫
∂M∩U

ω = (−1)n
∫
∂Hn∩V

(ωn ◦ φ−1)(x1, . . . , xn−1, 0)dx1 . . . dxn−1;

we will now compute the other integral term appearing in the conclusion of Stokes’ theorem and show
that it coincides with the above.

We compute the exterior of derivative of ω, using the definition of the partial derivative on a manifold,
to be

dω =
n∑

i=1

(−1)i−1∂ωi

∂xi
dx1 ∧ · · · ∧ dxn =

n∑
i=1

(−1)i−1

(
∂(ωi ◦ φ−1)

∂xi
◦ φ
)
dx1 ∧ · · · ∧ dxn;

by the definition of the integral we thus have that∫
U

dω =
n∑

i=1

(−1)i−1

∫
V

∂(ωi ◦ φ−1)

∂xi
(x1, . . . , xn) dx1 . . . dxn.

Since the ωi have compact support in U the functions ωi ◦φ−1 have compact support in V and hence
there exists some R > 0 such that the support of ω ◦ φ−1 is contained in [−R,R]n−1 × [0, R] ⊂ Hn

; in
particular ωi ◦φ−1 vanishes at the boundary of this rectangle except potentially on (−R,R)n−1×{0}.
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We then use the fundamental theorem of calculus to compute each term in the sum of integrals above
as follows: if i < n then by integrating with respect to the ith coordinate (using Fubini’s theorem to
change the order of integration) we have∫

V

∂(ωi ◦ φ−1)

∂xi
(x1, . . . , xn) dx1 . . . dxn =

∫ R

0

· · ·
∫ R

−R

[ωi ◦ φ−1]R−Rdx1 . . . dxi−1d̃xidxi+1 . . . dxn = 0;

where in the second equality we used the fact that ωi ◦φ−1(x) = 0 if xi = ±R! Similarly, if i = n then
we have∫

V

∂(ωi ◦ φ−1)

∂xi
(x1, . . . , xn) dx1 . . . dxn =

∫ R

−R

· · ·
∫ R

−R

[ωi ◦ φ−1]R0 dx1 . . . dxn−1

= −
∫ R

−R

· · ·
∫ R

−R

(ωi ◦ φ−1)(x1, . . . , xn−1, 0)dx1 . . . dxn−1

= −
∫
∂Hn∩V

(ωi ◦ φ−1)(x1, . . . , xn−1, 0)dx1 . . . dxn−1

where in the second equality we used the fact that ωn ◦ φ−1(x) = 0 if xn = R! Combining both cases
above we see that∫

U

dω = (−1)n
∫
∂Hn∩V

(ωi ◦ φ−1)(x1, . . . , xn−1, 0)dx1 . . . dxn−1 =

∫
∂M∩U

ω;

thus Stokes’ theorem holds for forms supported in the domains of charts!

For the general case we note that we can write ω =
∑

α∈A ραω where ραω is compactly supported in
the domain of a chart Uα for each α ∈ A; hence we can apply Stokes’ theorem to this form by the
arguments above. We note also that by construction of the partition of unity and the fact that the
differential of a constant is zero we have∑

α∈A

d(ραω) =
∑
α∈A

dρα ∧ ω +
∑
α∈α

ραdω = d

(∑
α∈A

ρα

)
∧ ω + dω = d(1) ∧ ω + dω = dω.

Using the above and the fact that Stokes’ theorem holds for forms compactly supported in charts we
see that ∫

M

dω =

∫
M

∑
α∈A

d(ραω) =
∑
α∈A

∫
M

d(ραω) =
∑
α∈A

∫
∂M

ραω =

∫
∂M

∑
α∈A

ραω =

∫
∂M

ω;

here we are using the linearity of the integral along with the fact that the sums are finite since the
support of ω is compact. Thus Stokes’ theorem holds for general compactly supported forms.

We have an immediate application:

Example 90. If γ : [a, b] → M is a smooth curve which is also an embedding (so that γ([a, b]) is a
1-manifold with boundary in M), for each f ∈ C∞(M) we have that for the line integral of df we can
apply Stokes’ theorem to get∫

γ

df =

∫
[a,b]

γ∗df =

∫
γ([a,b])

df =

∫
{γ(a)}∪{γ(b)}

f = f(γ(b))− f(γ(a));

thus Stokes’ theorem recovers the fundamental theorem of line integrals for embedded curves!
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We also record some immediate corollaries of Stokes’ theorem:

Corollary 7. We have the following:

1. IfM is a compact oriented n-manifold then the integral of every exact form is zero (i.e.
∫
M
dω = 0

for every ω ∈ Ωn−1(M)).

2. If M is an oriented n-manifold with boundary the integral of closed compactly supported forms
over the boundary vanish (i.e.

∫
∂M

ω =
∫
M
dω = 0 for every compactly supported ω ∈ Ωn−1(M)

with dω = 0 on M).

3. IfM is an oriented compact k-manifold embedded in a manifold with boundary N and ω ∈ Ωk(N)
is closed (i.e. dω = 0) on N with

∫
M
ω ̸= 0 then we have that:

• ω is not exact.

• M is not the boundary of a compact oriented (k + 1)-manifold with boundary in N .

As an application of the corollaries we have the following:

Example 91. We saw previously that the 1-form ω = xdy−ydx
x2+y2

on R2 \ {0} has non-zero integral over

S1. By the third corollary we see that ω cannot be exact (which we knew already since it was not
conservative) and that S1 cannot be the boundary of any compact oriented 2-manifold in R2 \ {0}.
Stokes’ theorem is thus telling us about which submanifolds can be boundaries based on the existence
of specific differential forms on the manifold!

We now discuss some applications of Stokes’ theorem, the first of which is to re-establish the Green,
Gauss, and Kelvin–Stokes theorems that one first encounters in a course in multivariable calculus
in the language of differential forms. The Green and Kelvin–Stokes theorem are treated on the
quizzes/homework so we will only establish the Gauss theorem here:

Theorem 13. (Gauss’ theorem) Let V ⊂ R3 be an open set with compact closure and smooth boundary
S = ∂V , and X : R3 → R3 is smooth. Then∫

V

div(X) dV =

∫
S

(X · n̂) dS,

where div(X) = ∂X1

∂x
+ ∂X2

∂y
+ ∂X3

∂z
if X = (X1, X2, X3), n̂ is the outward pointing unit normal to S,

and dV and dS are the volume and area elements on V and S respectively.

Proof. In order to show that this theorem follows from the Stokes’ theorem above we need to reinterpret
each of the terms above in the language of manifolds. Precisely, we may interpret V as a compact
oriented 3-manifold with boundary given by ∂V = S, X as a vector field restricted to V , dV =
dx ∧ dy ∧ dz, dS as the 2-form |∂S

∂u
× ∂S

∂v
|du ∧ dv where (u, v) 7→ (S1(u, v), S2(u, v), S3(u, v)) provides

a local parametrisation of S, and finally n̂ =
∂S
∂u

× ∂S
∂v

| ∂S
∂u

× ∂S
∂v

| in terms of this parametrisation.

By defining ω = X1dy∧dz+X2dz∧dx+X3dx∧dy we compute that its exterior derivative is precisely
dω = div(X)dV ! We can thus establish Gauss’ theorem by first showing that ω = (X · n̂) dS and then
applying Stokes’ theorem. We compute that on S we have

dy ∧ dz = dS2 ∧ dS3 =

(
∂S2

∂u

∂S3

∂v
− ∂S2

∂v

∂S3

∂u

)
du ∧ dv = n̂1

∣∣∣∣∂S∂u × ∂S

∂v

∣∣∣∣ du ∧ dv,
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and similarly one can show that both

dz ∧ dx = n̂2

∣∣∣∣∂S∂u × ∂S

∂v

∣∣∣∣ du ∧ dv and dx ∧ dy = n̂3

∣∣∣∣∂S∂u × ∂S

∂v

∣∣∣∣ du ∧ dv.
We can thus rewrite

ω = (X1n̂1 +X2n̂2 +X3n̂3)

∣∣∣∣∂S∂u × ∂S

∂v

∣∣∣∣ du ∧ dv = (X · n̂)dS,

and hence by Stokes’ theorem we see that∫
V

div(X) dV =

∫
V

dω =

∫
∂V

ω =

∫
S

(X · n̂) dS,

which is Gauss’ theorem as desired.

Remark 67. Each of the three theorems from multivariable calculus mentioned above have analogues
in Riemannian manifolds; we refer to [Lee12, Chapter 16] for more on this.

Remark 68. One can suitably interpret Maxwell’s equations for electromagnetism (and indeed many
equations from physics) in terms of differential forms; for a treatment of this we refer to [Eas18].

Another nice application of Stokes’ theorem is that it provides one of many possible proofs of the
following result (which also holds more generally for compact convex sets):

Theorem 14. (Brouwer fixed point theorem) Every smooth map from the closed unit ball to itself has
a fixed point. Precisely, if f : B

n → B
n
is smooth, then there is an x ∈ B

n
with f(x) = x.

Proof. We argue by contradiction and suppose that there is some smooth function f : B
n → B

n
with

no fixed points. For x ∈ B
n
there is thus a unique line from f(x) to x that intersects ∂B

n
= Sn−1 at

a unique point, let us call it g(x). We note that since f is smooth, the assignment of these points is
smooth and hence g : B

n → Sn−1 is smooth. Moreover, if x ∈ Sn−1 then we must have g(x) = x and
thus g is the identity on Sn−1.

We let ω be the induced orientation form on Sn−1 from Rn (which we saw previously), which is in
particular such that

∫
Sn−1 ω > 0. By pulling back ω by g we see that g∗ω ∈ Ωn−1(B

n
) which is such

that g∗ω = ω on Sn−1 (since g is the identity there). As ω ∈ Ωn−1(Sn−1) we have that dω = 0 and
thus d(g∗ω) = g∗(dω) = g∗0 = 0 (since the exterior derivative commutes with pullbacks of forms).
Combining the above we use Stokes’ theorem to see that

0 <

∫
Sn−1

ω =

∫
∂B

n
g∗ω =

∫
B

n
d(g∗ω) =

∫
B

n
0 = 0,

which is a contradiction! Thus we see that f must have a fixed point as desired.

Remark 69. The above theorem is remarkably useful, perhaps most notably in its application to game
theory, but can also be used to establish the Jordan curve theorem; see [Mae84].

Remark 70. We conclude this subsection by noting that in practice one often wants to apply Stokes’
theorem to objects that are ‘rougher’ than manifolds with boundary (e.g. to squares, cubes, and other
polygons). This can be done by considering objects called manifolds with corners which briefly
are topological manifolds with boundary obtained by replacing the codomain for charts (which one can
think of as the model space) with Rn

+ = {x ∈ Rn |xi ≥ 0} (as opposed to Hn
). Stokes’ theorem holds

for manifolds with corners (and indeed for much rougher objects than these, for which one needs the
language of chains and or geometric measure theory to discuss further) and we refer to [Lee12, Chapter
16] for more detail on this.
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5.5 De Rham cohomology and the degree

For the final topic in the course we will examine how the behaviour of the exterior derivative on
differential forms is influenced by the underlying topology of a manifolds. Due to lack of time, we will
just state results in this subsection and provide references for their proofs. We first make a definition:

Definition 59. Given an n-manifold with boundary, M , we call a differential form, ω closed if
dω = 0 and exact if ω = dη for some differential form η. We denote the collections of closed and
exact differential forms as:

• Ck(M) = {closed k-forms on M} = Ker(d : Ωk(M) → Ωk+1(M)).

• Ek(M) = {exact k-forms on M} = Im(d : Ωk−1(M) → Ωk(M)).

Remark 71. Since Ωk(M) = 0 for k < 0 and k > n we have Cn(M) = Ωn(M) and E0(M) = 0.
Moreover, as d2 = 0 we see that Ek(M) ⊂ Ck(M). Notice that in the above definition we are using the
fact that we have the sequence of linear maps (each denoted by d) given by

0
d−→ Ω0(M)

d−→ Ω1(M)
d−→ . . .

d−→ Ωn−1(M)
d−→ Ωn(M)

d−→ 0

in order to interpret the closed and exact forms as kernels and images respectively.

In the case of a 1-form, ω, we saw that it was the differential of some smooth function, hence exact,
if and only if its line integral over all smooth closed curves vanished. Moreover, since applying the
exterior derivative twice to any form gives zero, applying the exterior derivative to any exact form must
give zero; thus every is exact form is closed. One could ask whether all closed forms are necessarily
exact, but as we have seen this is not the case:

Example 92. The 1-form ω = xdy−ydx
x2+y2

on R2 \ {0} was shown not to be exact since its integral

over S1 was non-zero! However, one can compute directly that dω = 0 (by the symmetry in x and
y) and hence ω is in fact closed. As an aside, we also note that if we restrict ω to the open set
U = {(x, y) ∈ R2 |x > 0} then in fact ω = d(arctan( y

x
)) = dθ and hence ω is exact on U ; this is a

special case of a more general result we will describe shortly, stating that every closed form is locally
exact. We also note for later that while θ is not a well define defined function on S1, it is well defined
on S1 \ {pt}.

The failure of closed forms to be exact (i.e. the failure of the inclusion Ck(M) ⊂ Ek(M)) on a given
manifold is precisely related to the topology of the manifold itself (for example, from Stokes’ theorem
we saw that S1 was not the boundary of a compact oriented 2-manifold with boundary in R2 \ {0}
by examining closed forms). We quantify this behaviour, which can be thought of as measuring the
failure of the fundamental theorem of calculus holding on manifolds, through the following notion:

Definition 60. Given an n-manifold with boundary, M , the de Rham cohomology group of
degree k on M is given by

Hk
dR(M) = Ck(M)/Ek(M)

namely the quotient of the closed k-forms by the exact k-forms. Given ω ∈ Hk
dR(M) we denote its

equivalence class or the cohomology class of ω by [ω] and say that each ω̃ ∈ [ω] (so that ω − ω̃ is
exact) is cohomologous to ω.

Remark 72. We have that Hk
dR(M) = 0 for k < 0 and k > n since in either case Ωk(M) = 0, while

the definition implies that Hk
dR(M) = 0 for 0 ≤ k ≤ n if and only if every closed k-form is exact,

i.e. precisely whenever Ck(M) = Ek(M). Notice that since the closed and exact forms are a real vector
space, the de Rham cohomology groups are real (quotient) vector spaces.
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We now consider some examples:

Example 93. The existence of ω = xdy−ydx
x2+y2

which was a closed but not exact 1-form on R2 \ {0}
implies that necessarily H1

dR(R2 \ {0}) ̸= 0!

Example 94. A smooth function is closed, i.e. f ∈ C0(M), if and only if df = 0 which implies that
f is constant on each connected component of M . Since we always have that E0(M) = 0, we see that
H0

dR(M) = Rm if and only if M has m connected components; and thus we already see that the de
Rham cohomology groups depend on the topological structure of the manifold! Thus if M = {pt} is a
manifold consisting of a point we have H0

dR(M) = R and Hk
dR(M) = 0 for any k ̸= 0.

Just as we can pullback forms by smooth maps, we have the following notion:

Proposition 16. If F :M → N is a smooth map between manifolds with boundary then the pullback
of forms gives the linear induced cohomology map denoted F ∗ : Hk

dR(N) → Hk
dR(M) defined for

each ω ∈ Hk
dR(N) by setting F ∗[ω] = [F ∗ω]. In particular, if F : M → N is a diffeomorphism then

F ∗ is an isomorphism.

Proof. See [Lee12, Proposition 17.2].

Remark 73. This result tells us that the de Rham cohomology groups are diffeomorphism invariant
and allows us to distinguish manifolds (i.e. show that they are not diffeomorphic) if their de Rham
cohomology groups differ. In fact, the de Rham cohomology groups are invariant in an even stronger
sense since they can be shown to be homotopy invariant (if you know what this means); e.g. see [Lee12,
Proposition 7.11/Corollary 7.12]. This shows that even though the de Rham cohomology groups are
defined using the smooth structure, they are topological invariants!

The above proposition and remark give a number of examples:

Example 95. Since one can find a homotopy from the identity to the zero map on Rn we have that
H0

dR(Rn) = R (since Rn is connected) and Hk
dR(Rn) = 0 if k ̸= 0! Similarly we have that Hk

dR(M ×
Rn) = Hk

dR(M) for any k (since the Rn factor is contractible/homotopic to a point). The same
reasoning gives the identical result for any star shaped region in Rn; this is known as the Poincaré
lemma, see [Lee12, Theorem 17.13/14] for a proof.

Example 96. Let f : R → S1 ⊂ R2 \ {0} be defined by f(θ) = (cos(θ), sin(θ)) and ω = xdy−ydx
x2+y2

. We

know that ω is not exact and hence [ω] ̸= 0, which implies that H1
dR(S

1) ̸= 0. Moreover, we computed
that f ∗ω = dθ on R and so f ∗[ω] = [f ∗ω] = [dθ] = 0 as dθ is clearly exact (noting here that θ is a
well defined function on R)! This tells us that the induced cohomology map f ∗ : H1

dR(S
1) → H1

dR(R)
is not an isomorphism even though f is a local diffeomorphism.

For top degree differential forms on compact orientable manifolds we can say more:

Example 97. By Stokes’ theorem we know that if M is a compact orientable n-manifold (with empty
boundary) then any orientation form, ω, cannot be exact (else we would have ω = dη for some η and
hence by Stokes’ theorem we would have 0 <

∫
M
ω =

∫
∂M

η = 0 since ∂M = 0). This tells us that we
necessarily have Hn

dR(M) ̸= 0 and if ω̃ ∈ [ω] then since ω̃ = ω+ dη for some η ∈ Ωn−1(M) we see that∫
M
ω̃ =

∫
M
ω + dη =

∫
M
ω by Stokes’ theorem. We thus see that cohomological n-forms give the same

integral on compact orientable manifolds!

The above example is a special instance of the following:
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Theorem 15. Given a compact connected orientable n-manifold, M , we have that Hn
dR(M) = R and

given some orientation on M we can define this isomorphism by sending ω ∈ Ωn(M) to
∫
M
ω ∈ R.

Proof. See [Lee12, Theorem 7.31].

Remark 74. This is a specific instance of a general result known as the de Rham theorem, which
states that integration over chains defines an isomorphism between the de Rham cohomology group
and the singular cohomology groups with real coefficients; see [Lee12, Chapter 18].

The above result gives the following:

Example 98. For S1 we immediately have that Hk
dR(S

1) = R if k = 0 or k = 1 and are equal to
zero otherwise! Similarly, one can use the theorem to show that Hk

dR(S
n) = R if k = 0 or k = n and

are equal to zero otherwise; for a proof see [Lot21, Theorem 7.7]. One can in fact use the de Rham
cohomology groups of the spheres to give a proof of the hairy ball theorem; see [Lot21, Theorem 7.9].

Another effective use of the above theorem is that it allows us to introduce the notion of the degree
of a smooth map between compact connected orientable manifolds; capturing the idea of the number
of times the map ‘wraps’ the domain around the codomain:

Theorem 16. Given a smooth map F : M → N between compact connected orientable n-manifolds,
there exists a unique integer, k, called the degree of F such that

1. For each ω ∈ Ωn(N) we have
∫
M
F ∗ω = k

∫
N
ω.

2. If y ∈ N is a regular value of F then k =
∑

x∈F−1(y) sgn(x), where sgn(x) = ±1 if dxF is

orientation preserving/reversing.

Proof. See [Lee12, Theorem 17.35].

Remark 75. One can show that the degree is also a homotopy invariant, see [Lee12, Proposition
17.36], which allows us to define the degree of continuous maps between compact connected orientable
n-manifolds to be the degree of any smooth map it is homotopic to; this can always be arranged by the
Whitney approximation theorem (see [Lee12, Theorem 6.26]). Again this shows that the degree
is a topological property, even though it was initially defined based on a smooth structure!

Let’s look at some examples:

Example 99. The identity map on any compact connected orientable manifold has degree 1 and any
constant map has degree 0!

Example 100. One can compute explicitly that the antipodal map −In+1 : Sn → Sn has degree
(−1)n+1 (since det(−In+1) = (−1)n+1).

The notion of degree is a powerful tool in topology and can in fact be used to classify continuous
maps from spheres to themselves, see [Hat01, Corollary 4.25], as well as establish alternate proofs of
the Brouwer fixed point theorem and the fundamental theorem of algebra, see [Lot21, Section 7]. The
degree of a map is also related to winding numbers in complex analysis, linking numbers of curves,
and relates the so called index of a vector field with isolated zeros to the topology of the manifold
itself via the Poincaré–Hopf theorem (in particular it tells us that if a compact connected orientable
2-manifold has a non-vanishing vector field then it must be a torus; providing yet another proof of
the Hairy ball theorem).
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A Homework

A.1 Sheet 1

1. [5 points] Show that Rn with the standard definition of open sets is a topological space.

2. [5 points] Show that Rn is second countable.

3. [5 points] Show that in a Hausdorff topological space every convergent sequence has a unique
limit. Recall that we said a sequence converges in a topological space if it is eventually entirely
contained in any open set which contains the limit.

4. [5 points] Show that a second countable topological space is separable; i.e. contains a countable
dense subset, where dense means that it has non-empty intersection with every open set.

5. [8 points] Find diffeomorphisms between:

(a) (0, 1) and R.

(b) (0,∞) and R

(c) Rn and graph(f) = {(x, y) ∈ Rn × R | y = f(x)} ⊂ Rn+1, where f : Rn → R is smooth.

(d) S1 × (0,∞) and R2 \ {0}.

6. [6 points] Show that Rn is diffeomorphic to Rm if and only if n = m (hint: f : Rn → Rm

is a diffeomorphism if and only if the derivative Dxf is invertible at every point x ∈ Rn). In
particular, this provides an alternate way to show that the dimension of a smooth manifold is
well defined.

7. [6 points] Show that if U ⊂ Rn is open, f : U → Rn is smooth, and Dxf is invertible for each
x ∈ U , then f(U) is open. Use this to show that if M ⊂ Rn is an n-manifold, then M must be
open as a subset of Rn. Deduce that there are no compact n-manifolds M ⊂ Rn (hint: which
sets are both open and closed in Rn?).

8. [9 points] Show that if M is an m-manifold and N is an n-manifold then M ×N is an (m+n)-
manifold (note: if U ⊂ M and V ⊂ N are open then U × V ⊂ M × N is open). Deduce that
the standard n-torus, T n = S1 × · · · × S1 (product of n circles), is an n-manifold.

9. [5 points] Write down an explicit diffeomorphism from the standard 2-torus, T 2 = S1 × S1,
to the donut torus, defined as {((2 + cos(θ)) cos(ϕ), (2 + cos(θ)) sin(ϕ), sin(θ)) | θ, ϕ ∈ R} ⊂ R2.
This shows that the donut torus is also a 2-manifold by the result of the previous problem.

10. [6 points] Recall that we defined the real projective space, RP n, to be the space of lines through
the origin in Rn+1. This is equivalent to saying that RP n is the quotient of Rn+1 \ {0} by the
equivalence relation, ∼, defined by setting x ∼ y if x = λy for some λ ̸= 0. We often denote
points in RP n by equivalence classes, [x], for points x ∈ Rn+1 \ {0}. A set in a quotient space
is open if and only if its preimage under the quotient map is open.

Show that RP n is an n-manifold by verifying that for each i = 1, . . . n+ 1 the sets

Ui = {[(x1, . . . , xn+1)] ∈ RP n |xi ̸= 0},
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and maps φi : Ui → Rn defined by setting

φi([(x1, . . . , xn+1]) =

(
x1
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

)
,

provide an atlas {φi : Ui → φi(Ui)}n+1
i=1 for RP n with smooth transition maps.

A.2 Sheet 2

1. Given a manifold, M , we say that two atlases {φα : Uα → Vα}α∈A and {φβ : Uβ → Vβ}β∈B with
smooth transition maps for M are equivalent if their union {φγ : Uγ → Vγ}γ∈A∪B is also an
atlas with smooth transition maps forM ; an equivalence class of such atlases is called a smooth
structure on M .

(a) [3 points] Show that this is indeed defines an equivalence relation for atlases.

(b) [3 points] Show that two atlases are equivalent if and only if they define the same set of
smooth functions on M (i.e. f : M → R is smooth with respect to the first atlas if and
only if it is smooth with respect to the second atlas); a smooth structure thus determines
which functions are declared to be smooth on a topological manifold.

(c) [3 points] Show that each smooth structure on M contains a unique maximal atlas that
contains any other atlas as a subset.

With this in hand one could alternatively define a smooth manifold to be a topological manifold
equipped with a smooth structure (or equivalently a maximal atlas).

2. Let the discrete group Z2 = {±1} act on Rn by diffeomorphisms by setting f±1 = ±IRn .

(a) [6 points] Show that Z2 acts on Rn \ {0} (which is an n-manifold as it is open in Rn)
by diffeomorphisms freely and properly discontinuously; and thus also on any submanifold
M ⊂ Rn \ {0} provided that M = −M (i.e. which is invariant under −IRn).

(b) [3 points] Deduce using the quotient manifold theorem that Sn/Z2 is a manifold, make a
guess as to what manifold it is diffeomorphic to.

(c) [3 points] Deduce using the quotient manifold theorem that the donut torus in R3 quotient
by Z2 is a manifold, make a guess as to what manifold it is diffeomorphic to.

(d) [3 points] Deduce using the quotient manifold theorem that if C = S1 × R ⊂ R3 is a
cylinder then C/Z2 is a manifold, make a guess as to what manifold it is diffeomorphic to.

3. [3 points] The Smooth Urysohn Lemma states that given disjoint closed sets A,B ⊂ M of
a smooth manifold, then there exists a smooth function on M taking values in [0, 1] that is
identically 1 on A and identically 0 on B. Prove this lemma.

4. [6 points] Show that every tangent vector arises from a smooth curve: i.e. if v ∈ TxM for a
point, x, in some manifold, M , then there is a smooth curve γ : I → M such that v = γ′(0),
where γ′(0) is the velocity of the curve γ at 0 defined by γ′(0) = d0γ

(
d
dt

∣∣
t=0

)
(so that by the

definition of the differential γ′(0)(f) = d
dt

∣∣
t=0

(f ◦ γ) = (f ◦ γ)′(0) for each f ∈ C∞(M)).
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5. [4 points] For a submanifoldM ⊂ Rn× [0,∞) ⊂ Rn+1 with 0 ∈M , show that T0M ⊂ Rn×{0}
(hint: draw a picture and use the previous question). When does T0M = Rn × {0}?

6. [4 points] Suppose that we have two charts, φ : U → V and ϕ : Ũ → Ṽ , on a manifold, M ,

with x ∈ U ∩ Ũ . If we denote by (x1, . . . , xn) ∈ V and (y1, . . . , yn) ∈ Ṽ the coordinates in V and

Ṽ respectively, find an expression relating the coordinate vectors { ∂
∂xi

∣∣
x
}ni=1 to the coordinate

vectors { ∂
∂yi

∣∣
x
}ni=1 (hint: it may help to consult subsection 3.2 of the notes).

7. [6 points] By using the regular value theorem, show that the standard n-torus

T n = S1 × · · · × S1,

the product of n circles, is an n-manifold and compute its tangent space at each point.

8. [3 points] By using the regular value theorem, show that if t ̸= 0 then

Ht = {(x1, x2, x3) ∈ R3 |x21 + x22 − x23 = t}

is a submanifold of R3. What is its dimension?

9. [2 points] Show that the cone

{(x1, x2, x3) ∈ R3 |x21 + x22 − x23 = 0}

is not a submanifold of R3 (hint: consider what the tangent space at the origin would be).

10. On homework 1 we that if M is an m-manifold and N is an n-manifold then M × N is an
(m + n)-manifold, from which we deduce that T(x,y)(M × N) is isomorphic to TxM ⊕ TyN for
each (x, y) ∈M ×N (as their dimensions agree).

(a) [2 points] Use this fact to verify your answer above for the tangent space to T n.

(b) [6 points] Show that the canonical isomorphism between T(x,y)(M ×N) and TxM ⊕ TyN
is provided by the linear map α : T(x,y)(M × N) → TxM ⊕ TyN defined for each v ∈
T(x,y)(M ×N) by setting

α(v) = (d(x,y)πM(v), d(x,y)πN(v));

where πM : M × N → M and πN : M × N → N are the smooth projection maps to each
factor (hint: define a specific linear map, say β : TxM ⊕ TyN → T(x,y)(M ×N), using the
differential of the smooth inclusion maps into M × N for each factor and then apply the
chain rule for differentials to show that α ◦ β is the identity).

A.3 Sheet 3

1. Explain whether the following smooth maps are immersions, submersions, or embeddings (hint:
it may help to sketch the second and third maps below):

(a) [5 points] The Hopf fibration, f : S3 → S2, given by

f(x1, x2, x3, x4) = (x21 + x22 − x23 − x24, 2x1x4 + 2x2x3, 2x2x4 − 2x1x3).
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(b) [5 points] The four-petal rose, g : S1 → R2, given by

g(cos(θ), sin(θ)) = (sin(2θ) cos(θ), sin(2θ) sin(θ)).

(c) [5 points] The figure-eight, h : (−π, π) → R2, given by

h(t) = (sin(2t), sin(t)).

2. [4 points] Suppose that we have two charts, φ : U → V and ϕ : Ũ → Ṽ , on a manifold, M ,

with x ∈ U ∩ Ũ . If we denote by (x1, . . . , xn) ∈ V and (y1, . . . , yn) ∈ Ṽ the coordinates in V

and Ṽ respectively, homework 2 question 6 showed that if v ∈ TxM then the components, vi,
with respect to { ∂

∂xi

∣∣
x
}ni=1 were related to the components, ṽi, with respect to { ∂

∂yi

∣∣
x
}ni=1 by the

formula

ṽj =
n∑

i=1

∂(ϕ ◦ φ−1)j

∂xi
(φ(x))vi.

Find an analogous formula relating the components of some ω ∈ T ∗
xM in each set of coordinates;

i.e. relate the components, ωi, with respect to {dxi|x}ni=1 to the components, ω̃i, with respect
to {dyi|x}ni=1 (hint: examine the solution of homework 2 question 6). This question motivates
why we call tangent vectors covariant, since their components transform in the same way as
the coordinate partial derivatives, while we call cotangent vectors contravariant, since their
components transform in the oppose way to the coordinate partial derivatives.

3. [3 points] Show that given a manifold, M , and an exact ω ∈ Γ(T ∗M), then any two potentials
for ω locally differ by a constant; i.e. if ω = df = dg for f, g ∈ C∞(M) then f − g is a constant.

4. [6 points] The length, L(γ), of a smooth curve γ : [a, b] → Rn is defined by setting

L(γ) =

∫ b

a

|γ′(t)| dt;

where this is integration in the usual one variable sense. Show that there is no ω ∈ Γ(T ∗M)
such that L(γ) =

∫
γ
ω for every smooth curve γ : [a, b] → Rn.

5. The purpose of this question is to relate the line integral for 1-forms in class to the usual line
integral of a vector field in multivariable calculus. Given an open U ⊂ Rn and X ∈ Γ(TU) and
a smooth curve γ : [a, b] → U , we define the line integral of X along γ to be∫

γ

X =

∫ b

a

Xγ(t) · γ′(t) dt.

(a) [5 points] Show that for each X ∈ Γ(TU) there exists some ω ∈ Γ(T ∗U) such that∫
γ

X =

∫
γ

ω

where the latter denotes the line integral of a 1-form as introduced in class (hint: use the
dot product to define ω in terms of X).
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(b) [3 points] We say that X is conservative if∫
γ

X = 0

for every smooth closed curve γ : [a, b] → U . Show that X is conservative if and only if
X = ∇f for some f ∈ C∞(U) (hint: 1-forms are conservative if and only if they are exact).

(c) [5 points] Show that if n = 3, X ∈ Γ(TU), and we define the curl of X by setting

curl(X) =

(
∂X3

∂x2
− ∂X2

∂x3

)
∂

∂x1
+

(
∂X1

∂x3
− ∂X3

∂x1

)
∂

∂x2
+

(
∂X2

∂x1
− ∂X1

∂x2

)
∂

∂x3
,

then curl(X) = 0 if X is conservative (hint: use (b)). Find an example that shows that the
converse is not true if U = R3 \ {x = y = 0} (hint: use an example from the notes).

6. [3 points] Given an m-manifold, M ⊂ Rn, we define the normal bundle of M in Rn, which
we denote by ν(M ;Rn) by defining

ν(M ;Rn) =
⊔
x∈M

(TxM)⊥,

which comes with a natural projection, π : ν(M ;Rn) → M , defined by π(x, v) = x for v ∈
(TxM)⊥. Here we write (TxM)⊥ for the orthogonal complement (with respect to the dot product
in Rn) of TxM in Rn. By the vector bundle chart lemma in the notes, this defines a rank n−m
vector bundle and thus ν(M ;Rn) has dimension n = m + (n − m) as a manifold. Sections of
ν(M ;Rn) are called normal fields toM in Rn. Show that ν(Sm;Rm+1) is trivial by constructing
a nowhere vanishing normal field, hence ν(Sm;Rn) is diffeomorphic to Sm × R.

7. Given vector bundles πE : E → M of rank k and πF : F → M of rank l over a manifold M ,
we can form their Whitney sum, E ⊕ F , defined by E ⊕ F =

⊔
x∈M Ex ⊕ Fx with projection

π : E ⊕ F → M (setting π(x, v, w) = x for v ∈ Ex and w ∈ Fx). By the vector bundle chart
lemma in the notes, π : E ⊕ F →M is a vector bundle of rank k + l over M .

(a) [2 points] Given a submanifold M ⊂ Rn, show that the Whitney sum of the tangent and
normal bundle of M is trivial (where the normal bundle is defined as in question 6 above).

(b) [3 points] Show that the Whitney sum of trivial bundles is trivial. Use this to show that
T n is parallelisable (hint: use homework 2 question 10).

(c) [2 points] Give an example to show that the Whitney sum of a non-trivial bundle with
a trivial bundle can be trivial (hint: S2 is not parallelisable). Although not for credit but
worth thinking about, the Whitney sum of two Möbius bundles is trivial (so the Whitney
sum of non-trivial bundles can be trivial).

8. We define the matrix group SU(2) by setting

SU(2) =

{(
α −β
β α

) ∣∣∣∣α, β ∈ C, |α|2 + |β|2 = 1

}
,

where the bar denotes complex conjugation (i.e. if α = a+ bi then α = a− bi where i =
√
−1).

You may assume throughout this question that SU(2) is a Lie group (i.e. a smooth manifold
with smooth maps for group operations).
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(a) [4 points] Considering C2 diffeomorphic to R4 and the 2 × 2 matrices with entries in C
diffeomorphic to R8, show that SU(2) is the image of S3 via an embedding, so that S3 is
diffeomorphic to SU(2). Hence, state the dimension of SU(2).

(b) [2 points] Explain why (a) shows that S3 is parallelisable.

(c) [3 points] As an alternative to (b), explain why the existence of the vector fields

s1(x) = (−x2, x1, x4,−x3), s2(x) = (−x3,−x4, x1, x2), s3(x) = (−x4, x3,−x2, x1)

also show that S3 is parallelisable.

A.4 Sheet 4

1. [4 points] Given a real vector space, V , of dimension n, show that if L : V → V is linear,
ω ∈ ΛnV ∗, and v1, . . . , vn ∈ V then

ω(Lv1, . . . , Lvn) = det(L)ω(v1, . . . , vn).

This result was used several times in class (hint: prove it on basis elements first).

2. Let B = {(x, y) ∈ R2 |x2 + y2 < 1} ⊂ R2 and define a Riemannian metric, g, on B by setting

g = 4
dx⊗ dx+ dy ⊗ dy

(1− (x2 + y2))2
;

which is the Poincaré disk model of Hyperbolic space. Answer the following:

(a) [6 points] Given a smooth curve γ : [0, T ] → B, find a general formula for the length,
Lg(γ), of γ with respect to g.

(b) [4 points] Find the length of the curve γ(t) = (t, 0) for t ∈ [0, T ], where T ∈ (0, 1) .

(c) [2 points] What happens to the lengths in (b) as T → 1? Explain this geometrically.

3. [4 points] A Riemann surface is a 2-manifold admitting an atlas whose transition maps are
holomorphic (viewed as maps from C to itself). Show that every Riemann surface is orientable
(hint: f : C → C with f(x, y) = (u(x, y), v(x, y)) is holomorphic if ∂u

∂x
= ∂v

∂y
and ∂u

∂y
= − ∂v

∂x
).

Then, provide both an example and non-example of a Riemann surface with justification.

4. [8 points] Given manifolds M and N , show that M × N is orientable if and only if both M
and N are orientable.

5. We say that a diffeomorphism F : M → N between oriented manifolds is orientation pre-
serving if whenever we have orientation forms ω for M and η for N that F ∗η = fω for some
strictly positive f ∈ C∞(M) (i.e. if F ∗η gives the same orientation as ω). Answer the following:

(a) [2 points] Show that F :M → N is orientation preserving if and only if det(dxF ) > 0 for
each x ∈M (hint: use question 1 and recall the definition of the pullback of forms).

(b) [2 points] Deduce for which n the antipodal map, defined by minus the identity, on Rn is
orientation preserving.
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(c) [12 points] Using (a) and (b) or otherwise, show that real projective space, RP n, of
dimension n is orientable if and only if n is odd.

Using the quotient constructions as in homework 2 question 2, the same arguments for (c) also
show that both the Möbius band and Klein bottle are not orientable.

6. [4 points] First, using interior multiplication of forms find the Stokes orientation form, ωS2 ,

induced on S2 from B
3
(with the standard orientation form from R3). Then, by defining the

map F : (0, π)× (0, 2π) → S2 by setting

F (θ, ϕ) = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)),

determine the volume of S2 with respect to ωS2 .

7. [6 points] For a 1-form, ω, and vector fields X, Y show that

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]),

where we recall that [X, Y ] is the Lie bracket of the vector fields (hint: work locally and recall
that df(X) = Xf for smooth functions f). This provides a coordinate free way to compute the
exterior derivative of a 1-form; more general formulae exist for k-forms where k ≥ 2.

8. [6 points] Use Stokes’ theorem to show that if Σ ⊂ R3 is a compact, oriented 2-manifold with
boundary, ∂Σ = Γ, then for each vector field X we have∫

Σ

curl(X) · dΣ =

∫
Γ

X · dΓ,

which is the Kelvin–Stokes Theorem. In the above we define

dΣ = (dy ∧ dz, dz ∧ dx, dx ∧ dy), dΓ = (dx, dy, dz),

and

curl(X) =

(
∂X3

∂x2
− ∂X2

∂x3
,
∂X1

∂x3
− ∂X3

∂x1
,
∂X2

∂x1
− ∂X1

∂x2

)
.
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