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1 Motivating the Conjecture and Rudolph’s Theorem

The starting point of the conjecture of Furstenberg is in a theorem about dynamics of the

circle under the action of non-lacunary semi-groups of the integers. Briefly, a non-lacunary

semi-group of the integers is one not generated by powers of a single integer. The example

we shall focus on, and indeed the one that the conjecture addresses, is that of the the

non-lacunary semi-group generated by coprime natural numbers p and q.

Let us make the convention that N = {0, 1, 2, ...} and define the circle, T, to be [0, 1]

with the endpoints identified, we will use additive notation. Throughout, we will consider

coprime natural numbers p, q > 1 and maps T, S : T → T defined by Tx = px (mod 1)

and Sx = qx (mod 1) respectively. We shall work primarily in the setting of what we shall

hereafter call Borel probability spaces, (X,B, µ), where X is a compact metric space, B
is the σ-algebra of Borel sets (generated by the open sets in X) and µ is a probability

measure defined on B (so µ(X) = 1).

Remark 1.1. For most results throughout our work the coprime assumption will not be

necessary, though it does play a crucial role in establishing the final results for Rudolph’s

theorem.

Originally proven in greater generality (see [F]) by Furstenberg we have the following the-

orem for dynamics of the circle. It is worth noting that the proof of this theorem is highly

non-trivial, though a simpler proof may be found in [Bo], and so we shall only state the

result here in order to motivate our work.

Theorem 1.2 (Furstenberg 67’). Let A be an infinite, closed subset of T that is invariant

under both T and S, in the sense that for any x ∈ A, {pmqnx | m,n ∈ N} ⊆ A. Then

A = T.

Note that there exists numerous finite invariant sets; for example, consider the orbits un-

der T and S of any rational point in T. In order to motivate Furstenberg’s conjecture

from the above theorem, we first recall the definition of the support of a Borel measure:

Definition 1.3. For a Borel probability space, (X,B, µ), the support of µ, suppµ, is

defined to be the set of points in X such that every open neighbourhood of the point has

positive measure.

This set; suppµ is closed by definition, as it’s compliment is the union of all null open

sets of X. If µ is non-atomic, suppµ is necessarily infinite; to see this, suppose that µ is

supported on finitely many points then, as it’s compliment is a null set, at least one such

point in the support has positive measure and hence µ is atomic.

We now establish a corollary of Furstenberg’s dynamical result that serves as motivation
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for the conjecture we shall focus on.

Proposition 1.4. Furstenberg’s theorem (theorem 1.2) implies that every non-atomic,

invariant, Borel probability measure on the circle has full support, i.e. suppµ = T.

Proof. It suffices to show that suppµ is invariant under both T and S. For x ∈ suppµ

consider an open neighbourhood, V, of Tx. T is continuous so the set T−1(V ) is open and

contains x, hence it has positive measure. As µ is invariant, V also has positive measure,

and so Tx is an element of suppµ. Similarly suppµ is S-invariant. Thus by Furstenberg’s

theorem we have that suppµ = T.

It is interesting to note that the converse to this result is non-trivial, and likely as difficult

to prove as the original theorem. Russell Lyons states in [Ly] that this should follow easily,

however his intended argument relied on being able to find an irrational number in any

such infinite set; though there exist closed infinite sets that contain no irrationals (e.g.

{2−k | k ∈ N} ∪ {0}).

We now extend the definition of ergodicity for measure preserving systems under the action

of one transformation to that of two transformations, in order to formulate the conjecture.

Definition 1.5. An invariant Borel probability measure for a dynamical system

(X,B, µ, (T, S)) is said to be ergodic with respect to both T and S (or jointly ergodic)

if, for any E ∈ B, with T−1(E) = E and S−1(E) = E then either µ(E) = 0 or µ(E) = 1.

It is worth noting that joint ergodicity is a weaker condition to assume than ergodicity

with respect to a single transformation. Such an assumption would greatly simplify our

following work; for further discussion we refer the reader to section 6.

This corollary of the dynamical theorem led Furstenberg to conjecture the following mea-

sure rigidity result.

Conjecture 1.6. Any invariant, ergodic, Borel probability measure on T with respect to

both transformations T and S is either atomic or the Lebesgue measure.

The reason behind describing the conjecture as a measure rigidity result is that, if true,

then the set of ergodic measures for the circle under the joint action of T and S is relatively

small; consisting of the Lebesgue measure and linear combinations of Dirac point measures.

However, if we consider each transformation T or S individually there are uncountably

many fully supported ergodic measures on the circle; for example, by considering Bernoulli

measures, on the one-sided full shift on p symbols, and the factor map given by base p

expansion, we get an uncountable family of fully supported ergodic measures on the circle.

This conjecture of Furstenberg has received much attention and though it is still open,
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the work of Rudolph in [R], which generalised prior results of Lyons [Ly], provides the

strongest known partial result, which we shall hereafter refer to as Rudolph’s theorem.

Theorem 1.7. (Rudolph 89’) Let µ be an invariant, Borel probability measure on T that

is ergodic with respect to both T and S. Then, if µ is not Lebesgue measure both T and S

have zero entropy.

This theorem reduces conjecture 1.6 to the case of measures for which T and S have

zero measure theoretic entropy; however this does not solve the conjecture as there exist

dynamical systems that admit non-atomic, invariant, ergodic, Borel probability measures

with zero entropy. Two examples of such are provided by minimal systems of symbolic

shifts of zero entropy, and so called Rank-1 transformations; for literature about these

examples we refer the reader to the chapter on the Jewett-Kreiger theorem in [DGS] and

the section ”Rank-1 has zero entropy” in [K] respectively.

The goal of this report is to present a self contained, streamlined exposition of the original

arguments given by Rudolph, expanding on details and clarity where possible. In order to

do this we will need to introduce and utilise the techniques of inverse limits, disintegration

of measures and entropy with respect to σ-algebras; all of which are likely unseen in a

first course in ergodic theory. Though there exist various proofs of the above theorem,

all other works utilise different constructions and techniques to the original work (e.g.

Radon-Nikodym derivatives in [PY], invertible extensions and Pinsker algebras in [ELW]).

Throughout, we assume knowledge of basic notions and results of ergodic theory, partic-

ularly those of measure preserving transformations, the ergodic theorems and entropy for

partitions. We shall also use results from measure theory and functional analysis, giving

references where applicable. For a good introduction to these subjects we refer the reader

to [EW], [ELW] and [C].

We now give an outline of the report; in section 2 we re-frame the dynamics of the circle,

under the action of T and S. This is done in the setting of symbolic dynamics, in order to

later construct an invertible dynamical system uniquely lifted from the circle, for a given

measure µ. In order to do this we will need to introduce the notion of an inverse limit of

dynamical systems, which is the focus of section 3. We use this new system in section 4

and establish the disintegration theorem, a central result we utilise frequently throughout

sections 4 and 5. The latter part of section 4 is devoted to the notions of the so called δ

probability distributions and symmetric points. These notions will allow us to conclude

that in the case that almost every point is symmetric, our measure must be Lebesgue.

Section 5 introduces and applies the theory of entropy with respect to σ-algebras; this is

done in order to prove that under the assumption of positive entropy, almost every point is

symmetric, which establishes Rudolph’s theorem. Finally, section 6 concludes the report

by collecting several extensions, generalisations and relaxations of Rudolph’s theorem.
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2 The Symbolic Representation and Correspondence with

T

The first step in the proof of Rudolph’s theorem is to represent the dynamics of the circle,

under the actions of T and S, in terms of arrays under the action of a left and down shift

respectively. We will construct an almost (in a precise sense) 1-1 correspondence between

points of the circle and such arrays, allowing us to view measures on the circle as measures

on the set of arrays. From this symbolic description we are then able to obtain the results

needed to prove the theorem.

We begin by defining a partition of the circle into pq intervals according to the pre-image

of the circle under the actions of both T and S,

Ij :=
[
j
pq ,

j+1
pq

]
for j ∈ {0, . . . , pq − 1}.

For each of the transformations we now associate transition matrices, whose entries are

determined by which intervals, Ij , of the partition are contained in the images of intervals,

Ii, under the maps T and S. Precisely, we define a pq by pq transition matrix, MT = (aij),

for T where aij = 1 if Ij ⊂ T (Ii), and zero otherwise. Similarly for S we define MS = (bij),

with bij = 1 if Ij ⊂ S(Ii), and zero otherwise.

Thus in the simplest case, where we take p = 2 and q = 3, we get the following transition

matrices:

MT =



1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1


MS =



1 1 1 0 0 0

0 0 0 1 1 1

1 1 1 0 0 0

0 0 0 1 1 1

1 1 1 0 0 0

0 0 0 1 1 1


We now let Σ = {0, . . . , pq − 1} and consider the one-sided shift space, Σ+

MT
; namely the

set of infinite one-sided sequences of elements of Σ where a symbol j may follow a symbol

i if and only if aij = 1.

We now introduce arrays and show that there is an (almost) one-to-one correspondence

between such arrays and the circle.

Define Y ⊂ ΣN2
to be all arrays whose rows are sequences in Σ+

MT
and columns are

sequences in Σ+
MS

; we will denote by y(i, j) the symbol determined by the pair (i, j) ∈ N2.

With this notation, for any y ∈ Y and fixed i ∈ N, (y(k, i))k∈N ∈ Σ+
MT

and (y(i, k))k∈N ∈
Σ+
MS

.

Given any point, x ∈ T, we may associate to it an array, yx ∈ Y , defined by yx(i, j) = k
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if T iSj(x) ∈ Ik. To see that such an array lies in Y , we note that if yx(i, j) = k and

yx(i + 1, j) = l for some i, j ∈ N then by definition we must have T iSj(x) ∈ Ik and

T i+1Sj(x) ∈ Il. Hence we conclude that T (Ik) ∩ Il 6= ∅, which by construction of the

partition implies that Il ⊂ T (Ik); thus we see that the rows of yx lie in Σ+
MT

. A symmetric

argument for S shows that the columns of yx lie in Σ+
MS

.

Such an array will arise uniquely from a point x ∈ T, providing none of the forward images

of x under T and S are contained in the intersection of two intervals of the partition given

by the Ij . To see this let

V :=

{
x ∈ T

∣∣∣∣ x =
t

pnqm
, t, n,m ∈ N

}
( T,

and note that for any x = t
pnqm ∈ V we have that T aSbx is contained in two of the

intervals in the partition given by the Ij when a ≥ n− 1, b ≥ m− 1. If we were to make a

choice for the symbol yx(a, b) for some such a and b above, we would then determine all

symbols for yx. The reason for this is that the choice of symbol yx(a, b) corresponds to

making a choice of one of two intervals of the partition given by the Ij , either to the left

or to the right of the point T aSb(x) ∈ [0, 1). Such a left or right interval choice then forces

a respective left or right interval choice for points TnSm(x) ∈ [0, 1) for each n,m ∈ N.

Thus, in order to ensure yx ∈ Y , our choice of symbol yx(n,m) is forced by our initial

left or right choice above; in order for the rows and columns of yx to be in Σ+
MT

and Σ+
MS

respectively.

We’ve shown that given any point x ∈ T \ V we can construct a unique array yx ∈ Y

as defined above, and for x ∈ V we have two such arrays that may arise in the above

construction. We now perform this construction in reverse.

Consider a finite sequence, (x0, . . . , xn), of elements in Σ such that axixi+1 = 1 for all

i ∈ {0, . . . , n− 1}. As T−(n−1)(Ixn) is a disjoint union of intervals of length p−nq, we have

a corresponding interval (of length p−nq) of the form,

n−1⋂
j=0

T−j(Ixj ) =

[
t

pnq
,
t+ 1

pnq

]
for some t ∈ N.

Thus for any sequence, (xi)
∞
i=0, in Σ+

MT
we may (uniquely, provided the point constructed

does not lie in V ) associate a point on the circle, given by

x =

∞⋂
j=0

T−j(Ixj ) ∈ T.

Similarly, we perform the above construction in the same manner for S, except now we

require bxixi+1 = 1 for all i ∈ {0, . . . , n− 1}; so we see that each sequence in Σ+
MT

or Σ+
MS
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gives rise to a corresponding point on the circle.

We will now show, similarly to the above, that from an array in Y we recover a corre-

sponding point in T which is determined by the joint action TS. To do this we will need

the following lemma:

Lemma 2.1. For k, l ∈ Σ and i ∈ N, all y ∈ Y such that y(i, i) = k and y(i+ 1, i+ 1) = l

agree on the symbols y(i, i+ 1) and y(i+ 1, i). In other words every y ∈ Y is determined

by its diagonal symbols, (y(i, i))i∈N.

Proof. To prove this lemma we consider directed graphs whose vertices are labelled by

symbols in Σ; we show that for adjacency matrices corresponding to applications of the

maps T and S there are unique intermediate vertices determining the symbols y(i, i+ 1)

and y(i+ 1, i).

As the map STx = TSx = pqx(mod1) takes any interval Ii to the whole of T, we have that

the matrices MTMS and MSMT have positive entries. Now summing a row or column of

MTMS gives exactly pq and thus every entry must be equal to 1. A symmetric argument

shows that MSMT has every entry equal to 1.

We now consider two directed graphs, both with vertices labelled by symbols in Σ and

each one with an adjacency matrix determined by MT and MS respectively. Suppose we

are at a vertex labelled by the symbol k and travel to a vertex labelled by the symbol l,

first moving via a single directed edge determined by MS and then by a single directed

edge determined by MT . The number of possible ways of taking such a path between

k and l is determined by MTMS , which by the above means we have a unique choice of

intermediate vertex; the label of this intermediate vertex corresponds to the unique symbol

for y(i + 1, i). Similarly, if we consider moving first by a single directed edge determined

by MT and then by a single directed edge determined by MS , we have a unique symbol

for y(i, i+ 1). Thus we see that the diagonal symbols entirely determine the array.

By the above lemma, any y ∈ Y is determined entirely by the diagonal symbols, (y(i, i))i∈N,

and so given any y ∈ Y we may define

x =
∞⋂
i=0

S−iT−i(Iy(i,i)) ∈ T.

Following our above setup we have a well defined map between our space, Y , of arrays

and the circle, T.

Definition 2.2. Define the map ϕ : Y → T by setting for any y ∈ Y
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ϕ(y) =
∞⋂
i=0

S−iT−i(Iy(i,i)) ∈ T.

With this definition and our above lemma we have that ϕ is one-to-one onto T \ V and

two-to-one onto V . We shall see later on that the set V is not an obstruction, as under

sensible assumptions it will be measure theoretically negligible, allowing us to identify the

measure preserving systems involving Y and T.

We now prove a lemma that will aid us in section 4, ensuring our constructed sequence

of δ measures converges weakly to the Lebesgue measure. First let us note that the set

ϕ−1(V ) is forward and backwards invariant under the action of the left and down shifts

on the space Y , which we shall denote by T̂ and Ŝ respectively.

Lemma 2.3. Any ΣMT
horizontal ray in ΣN2

, namely a sequence of symbols

(i(n,m), i(n+1,m), ...) for some n,m ∈ N, determines the symbols y(i, j) for any i ≥ n

and j ≥ m of any y ∈ Y such that y(n + k,m) = i(n+k,m) for all k ∈ N, provided that

ϕ(y) /∈ V . A symmetric result holds for any ΣMS
vertical ray in ΣN2

with symbols to the

right being determined.

Proof. As we assume that ϕ(y) /∈ V and have that ϕ−1(V ) is forward invariant under the

actions of T̂ and Ŝ we must have that ϕ(T̂nŜm(y)) /∈ V also. Hence, knowledge of all

symbols y(n+ t,m) for any t ≥ 0 determines a unique point (by our above work)

x = ϕ(T̂nŜm(y)) =

∞⋂
t=0

T−t(I(n+t,m)).

Then by construction x /∈ V and so x has a unique pre-image under ϕ, such that

y(i, j) = ϕ−1(x)(i− n, j −m)

for i ≥ n and j ≥ m.

With this correspondence established, we introduce the main space we shall focus on for

much of our work; before concluding this section with a discussion of the topologies we

will endow our spaces with.

Define Ŷ ⊂ ΣZ2
to be the set of Z2 arrays with rows being two sided sequences in ΣMT

and columns being two sided sequences in ΣMS
; we will denote by y(i, j) the symbol

determined by the pair (i, j) ∈ Z2.

Define the map ψ : Ŷ → Y to be the restriction of an array in ΣZ2
to it’s top right

quadrant (i.e. restriction to ΣN2
), by setting ψ(ŷ)(i, j) = ŷ(i, j) for every ŷ ∈ Ŷ and each
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pair (i, j) ∈ N2. With this notation we define the map, ϕ̂ := ϕ ◦ ψ : Ŷ → T (i.e. the map

that first restricts the Z2 array to an N2 array and then gives the corresponding point in

T).

Let us also denote by T̂ and Ŝ the left and down shifts, respectively, on the space Ŷ and

note that both transformations are invertible on this space. The main focus of the next

section will be on measures on the space Ŷ that are invariant under T̂ and Ŝ.

Remark 2.4. We note for future reference that T ◦ ϕ̂ = ϕ̂ ◦ T̂ and S ◦ ϕ̂ = ϕ̂ ◦ Ŝ.

To conclude this section we shall discuss the topologies of the spaces that we shall work

with, and their corresponding Borel σ-algebras. For the circle, T, we shall endow it with

the topology generated by the open intervals and denote its Borel σ-algebra by BT.

For the spaces of arrays, Y and Ŷ , we shall endow them with the topology generated by

the cylinder sets, similarly to the case of one and two sided shift spaces. Each cylinder set

is defined to be the set of arrays, in Y or Ŷ , such that the symbols agree with a prescribed

finite size array in Y or Ŷ respectively. With this topology generated by such cylinder

sets, we shall denote the Borel σ-algebras of Y and Ŷ by BY and B
Ŷ

respectively.

Having defined topologies, we then note that each of our three spaces, T, Y and Ŷ , are

compact metric spaces (though we shall never refer explicitly to the metrics they are

endowed with) with countably generated σ-algebras. With these defined σ-algebras, ϕ

and ϕ̂ are then also measurable maps between their respective spaces.

It now becomes useful to introduce the notion of an atom of a σ-algebra.

Definition 2.5. For a Borel probability space (X,B, µ) and a countably generated σ-

algebra, A ⊆ B, we define the atom of A containing x to be

[x]A = ∩x∈A∈AA =
⋂
x∈Ai

Ai ∩
⋂
x/∈Ai

X\Ai

(i.e. the smallest element of A containing x).

Finally, by definition of the map ψ and the cylinder sets, we note for later use that by

viewing BY as a sub-σ-algebra of B
Ŷ

, we have that [ŷ]BY = ψ−1
(
ψ(ŷ)

)
for each ŷ ∈ Ŷ .

This follows as if any two arrays give the same ΣN2
restriction they must also belong to

all of the same cylinder sets in Y , and hence the same atom of BY .
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3 Lifted Measures and Inverse Limits

Let us denote by M the space of all T and S invariant Borel probability measures on T.

We now show that the set V without the point 0 is indeed a null set.

Lemma 3.1. For any µ ∈M we have that µ(V \ {0}) = 0.

Proof. Let us assume for contradiction that µ(V \ {0}) 6= 0; then, as V is countable, there

must exist x ∈ V such that µ(x) > 0. For such a point x there exist positive integers

m,n ∈ N such that SmTn(x) = 0. We then conclude that µ(0) = µ(S−mT−n(0)) ≥
µ(0) +µ(x) (as both 0 and x are contained within S−mT−n(0)), however this implies that

µ(x) ≤ 0, a contradiction.

Under the assumption that µ({0}) = 0 we may now identify the two dynamical systems

(T,BT, µ, (T, S)) and (Y,BY , µ̂, (T̂ , Ŝ)); where µ̂ is the unique measure that lifts to the

space Y via the map ϕ defined in section 2. Precisely, as the map ϕ is invertible when

restricted to the compliment of the pre-image of V , Y \ ϕ−1(V ), we may uniquely define

a Borel measure µ̂ by setting µ̂(E) := µ(ϕ(E)) each E ∈ BY . As we have uniquely lifted

µ to the measure µ̂ on Y , and in our following work shall only focus on the spaces Y and

Ŷ , it becomes useful to identify µ̂ with µ.

With this identification it is now notationally convenient to drop the hats from the trans-

formations on both Y and Ŷ , it will be clear from context whether the transformations T

and S are being used on the spaces of arrays or on the circle.

For the rest of our work we will restrict our measures to the set, M̂0, which we define

to be the set of T and S invariant, ergodic Borel probability measures on the space Ŷ ,

excluding the measure, δ̂0 (lifted from the Dirac point mass at 0, δ0). This restriction is

made so that we are in the setting of the above lemma, and as δ0 has zero entropy with

respect to both transformations, this is done without any loss of generality.

We now turn our attention to the two dynamical systems Y = (Y,BY , µ, (T̂ , Ŝ)) and

Ŷ = (Ŷ ,B
Ŷ
, µ̂, (T, S)); where µ̂ is the measure on B

Ŷ
defined by µ̂(E) = µ

(
ϕ̂(E)

)
for

each E ∈ B
Ŷ

. In this manner, as we have that BY ⊂ BŶ (where we are now considering

cylinders only in the top right quadrant), we can view µ as the restriction of µ̂ to BY .

This perspective also allows us to identify the dynamical system Y with (Ŷ ,BY , µ, (T̂ , Ŝ)),

which will be helpful later on.

To proceed with the proof it becomes necessary to introduce the notion of an inverse limit

of dynamical systems. It will turn out that our system Ŷ is precisely this notion for the

underlying system Y, and the theory we will develop for inverse limit systems will mean

that we may turn our attention to Ŷ in order to complete our result.
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We will provide the necessary definitions and set up before establishing the results we

require for our purposes. As such, our introduction to inverse limits will omit a large

amount of detail, more of which may found in Brown’s paper, [Br], from which the treat-

ment here is adapted (more results and application of inverse limits to dynamical systems

may be found in [I]). In Brown’s paper the concept of an inverse limit is introduced for

systems under the action of just one transformation; however, the definitions extend nat-

urally to our setting, where we are considering two (or more generally a semi-group of)

transformations, and this is the generality we shall give here.

The notion of an inverse limit in a category is a construction that we shall exploit to great

effect in our proof of Rudolph’s theorem. In order to define the concept, we first need

to establish the category of dynamical systems that we are to work with by describing

its objects and morphisms. The objects we consider will be so called conjugacy classes

of dynamical systems of the form Φ = (X,B, µ, (φ, ψ)); where X is some non-empty set,

B is a σ-algebra of subsets of X, µ is a probability measure on B and (φ, ψ) is a pair of

measure preserving transformations on the set X.

To motivate the definition of conjugacy for dynamical systems of the above form, we may

look at our examples given by T and S in the theorem. For instance, in the case that

p = 2 and q = 3; the dynamics on T are no different from those of the maps that square

and cube complex numbers on the unit circle in the complex plane. Formally, we give the

following definition:

Definition 3.2. We shall say that two dynamical systems, Φ = (X,B, µ, (φ, ψ)) and

Φ̃ = (X̃, B̃, µ̃, (φ̃, ψ̃)), are conjugate if there exists a bijective map Θ : B̃ → B that satisfies

the two following conditions:

1. µ(Θ(B̃)) = µ̃(B̃) for any B̃ ∈ B̃

2. µ(φ−1(Θ(B̃)) ∆ Θ(φ̃−1(B̃))) = 0

3. µ(ψ−1(Θ(B̃)) ∆ Θ(ψ̃−1(B̃))) = 0

(where ∆ denotes the symmetric difference between sets).

Remark 3.3. If we have an invertible measure preserving map Ψ : X → X̃ (up to sets

of zero measure) whose inverse is also measurable and is such that Ψ ◦ φ = φ̃ ◦ Ψ (mod

zero), then its inverse, Ψ−1, effects such a conjugacy (in the case of the doubling/tripling

and squaring/cubing maps above we may take Ψ : T→ S1 : x 7→ exp(2πix) to see that the

dynamical systems are conjugate).

We now introduce the morphisms, which we shall call factor maps, between the conjugacy

classes of dynamical systems.
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Definition 3.4. We say that a dynamical system Φ̃ = (X̃, B̃, µ̃, (φ̃, ψ̃)) is a factor of the

dynamical system Φ = (X,B, µ, (φ, ψ)) if there exists a measure preserving transformaton

Ψ : X → X̃ such that Ψ ◦ φ = φ̃ ◦Ψ (mod zero) and Ψ ◦ ψ = ψ̃ ◦Ψ (mod zero). We then

write that Φ
Ψ−→ Φ̃ or Φ̃|Φ.

With this definition, we shall no longer distinguish between dynamical systems that are

conjugate to one another, and in the proceeding treatment we may work with a represen-

tative of each conjugacy class.

Remark 3.5. If we have that Φ̃ is a factor of Φ, then we may assume (by suitable choice

of conjugacy class representative) that X̃ ⊆ X, B̃ ⊆ B and hence that µ̃ and the pair

(φ̃, ψ̃) may be viewed as the respective restrictions of µ and the pair (φ, ψ) to B̃ and X̃.

By taking this perspective, we then have that B̃ is an invariant sub-σ-algebra of B, in the

sense that φ−1(B̃) ⊆ B̃ (mod zero) and ψ−1(B̃) ⊆ B̃ (mod zero). Furthermore, the system

Φ̃ has a conjugacy class representative as an invertible system if and only if we have that

φ−1(B̃) = B̃ (mod zero) and ψ−1(B̃) = B̃ (mod zero). It is also important to note that

even if Φ̃|Φ and Φ|Φ̃ we do not necessarily have that Φ and Φ̃ are measure theoretically

isomorphic (e.g. see [Le],[P]). In this case however one says that Φ and Φ̃ are weakly

measure theoretically isomorphic.

With the equivalence between dynamical systems and their factor maps defined, we now

have a concrete category of measure preserving dynamical systems that we can work with.

We now make a few preliminary definitions before constructing the notion of an inverse

limit.

Definition 3.6. An inverse system of dynamical systems is a triple, (J ,Φα,Ψαα̃), such

that:

1. J is a directed set (with pre-ordering denoted by <),

2. Φα is a dynamical system for all α ∈ J ,

3. For any α, α̃ ∈ J with α < α̃ we have that Φα̃
Ψαα̃−−−→ Φα (i.e. Φα|Φα̃).

Remark 3.7. A directed set is a non-empty set with a reflexive and transitive binary

operation; it is a more general concept than a partial ordering as we don’t require that the

binary operation is antisymmetric.

Definition 3.8. An upper bound for an inverse system (J ,Φα,Ψαα̃) is a dynamical system

Φ such that Φα|Φ (denoting the factor maps by Φ
ρα−→ Φα) for any α ∈ J and in addition

whenever α, α̃ ∈ J are such that α < α̃, the following diagram
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Φα Φα̃

Φ

Ψαα̃

ρα̃
ρα

commutes. Equivalently Φ is an upper bound of the inverse system if for each α ∈ J we

have that Φα is a factor of Φ.

The inverse limit of an inverse system is in a sense analogous with the supremum of a set,

and is a good comparison (as the least upper bound) to keep in mind for the following

definition:

Definition 3.9. An inverse limit of an inverse system (J ,Φα,Ψαα̃) is an upper bound, Φ̂

(with factor maps given by Φ̂
ρ̂α−→ Φα), such that Φ̂ is a factor of every other upper bound

for the inverse system. We then write that

Φ̂ = lim←−
α∈J

(Φα).

This is equivalent to saying that if Φ̄ is another upper bound, with maps given by Φ̄
ρ̄α−→ Φα,

for (J ,Φα,Ψαα̃) we have a factor map Φ̄
σ−→ Φ̂ such that the following diagram

Φα Φ̂

Φ̄

ρ̂α

σ
ρ̄α

commutes.

By considering remark 3.5, if we have a dynamical system Φ = (X,B, µ, (φ, ψ)) that is

an upper bound for some inverse system, (J ,Φα,Ψαα̃), of dynamical systems, then for

each α ∈ J we have a conjugacy class representative such that Φα = (X,Bα, µ, (φ, ψ)).

Furthermore we have that the Bα are increasing, with respect to the indexing by the

directed set J , invariant sub-σ-algebras of B (hence for any α, α̃ ∈ J with α < α̃ the

maps Ψαα̃ and ρα are the identity on X). Therefore, if the inverse limit, say Φ̂, exists for

the inverse system, then it has a conjugacy class representation as Φ̂ = (X, B̂, µ, (φ, ψ))

where B̂ ⊇
⋃
α∈J Bα.

Now that we have established the formal definition of an inverse limit, we will collect the

results that we will require for the proof of Rudolph’s theorem, before showing that Ŷ

is indeed the appropriate space to be working with. We shall not deal with the general
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existence of inverse limits, as we shall explicitly show that Ŷ is the underlying set for the

inverse limit for an appropriate inverse system. Instead, we first simultaneously tackle a

characterisation, as well as uniqueness, of the inverse limit. We first recall a definition

from measure theory and make analogous definition for dynamical systems.

Definition 3.10. For a σ-algebra B, we define the join of a collection of sub-σ-algebras,

{Bα}α∈A, to be the smallest σ-algebra, denoted by
∨
α∈A Bα, containing their union,⋃

α∈A Bα.

Now suppose that {Φα}α∈A is a collection of factors (with σ-algebras Bα and factor maps

ρα), of a dynamical system Φ = (X,B, µ, (φ, ψ)). We then define their join, denoted by∨
α∈AΦα, to be the dynamical system given by

(
X,
∨
α∈A

ρ−1
α (Bα), µ, (φ, ψ)

)
.

We now show that if we take our indexing set, A, to be J for an inverse system,

(J ,Φα,Ψαα̃), of dynamical systems we have that the join and inverse limit coincide,

namely:

Theorem 3.11. For an inverse system (J ,Φα,Ψαα̃) that has an upper bound Φ we have

that

lim←−
α∈J

(Φα) =
∨
α∈A

Φα.

Furthermore, if the inverse limit exists it is uniquely determined by the join construction.

Proof. By choice of a conjugacy class representative we view the upper bound as Φ =

(X,B, µ, (φ, ψ)), with factor maps denoted by Φ
ρα−→ Φα; remark 3.5 then means that for

all α ∈ J we have representations Φα = (X,Bα, µ, (φ, ψ)) with Bα ⊆ B, and hence that

Ψαα̃ and ρα are the identity on X. If we then define Φ̂ = (X,
∨
α∈A Bα, µ, (φ, ψ)) it is

evident that Φ̂ is an upper bound for the inverse system; thus it remains to show that Φ̂

is a factor of every other upper bound in order to conclude that it is indeed the inverse

limit.

Suppose now that Φ̄ = (X̄, B̄, µ̄, (φ̄, ψ̄)) is another upper bound for the inverse system,

with factor maps Φ̄
ρ̄α−→ Φα. As the maps Ψαα̃ are the identity on the space X we see that

by considering the following commutative diagram,
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Φα Φα̃

Φ̄

Ψαα̃

ρ̄α̃
ρ̄α

that for any α, α̃ ∈ J we have ρ̄α = ρ̄α̃ as maps from X̄ to X; let us then denote these

maps simply by ρ̄. Now we observe that as ρ̄ is measure preserving and ρ̄−1(
⋃
α∈A Bα) =⋃

α∈A ρ̄
−1(Bα) ⊆ B̄ we have that ρ̄−1(

∨
α∈A Bα) ⊆ B̄. Thus we may conclude that Φ̄

ρ̄−→ Φ̂

and hence Φ̂ is an inverse limit.

As remark 3.5 above shows, we have not established uniqueness as yet; all we have shown

is that any two inverse limits are weakly measure theoretically isomorphic. To prove

uniqueness, we may suppose without loss of generality that our original upper bound Φ is

another inverse limit for the inverse system. Thus by definition of the inverse limit there

must exist a factor map Φ̂
σ−→ Φ such that the following diagram

Φα Φ

Φ̂

ρα

σ
ρ̂α

commutes. Again note that for any α ∈ J we have that ρα, ρ̂α are the identity on X

and hence σ must be the identity also. As σ is measure preserving we also have that

B = σ−1(B) ⊆
∨
α∈A Bα ⊆ B and hence B =

∨
α∈A Bα. Therefore we conclude that the

dynamical systems Φ̂ and Φ are measure theoretically isomorphic, and so the inverse limit

is unique.

We now are ready to return to the setting of our dynamical systems Y and Ŷ. We wish

to establish a suitable inverse system, containing Y, such that the dynamical system Ŷ is

the inverse limit. Recall that we may view µ as the restriction of µ̂ to the σ-algebra BY .

Let us define a pre-ordering, <, on the set N2 by (i, j) < (k, l) if and only if i ≤
k or j ≤ l. Then by defining for each (i, j) ∈ N2 the dynamical system Y(i,j) =

(Ŷ , T iSj(BY ), µ̂, (T, S)) (i.e. Y(0,0)
∼= Y) we may construct an inverse system by defining

the maps Ψ(i,j),(k,l)(ŷ) = T i−kSj−l(ŷ) for each ŷ ∈ Ŷ whenever (i, j) < (k, l). Here we

are using that both transformations T and S are invertible on Ŷ, as well as viewing µ̂

restricted to T iSj(BY ). It is then clear that such maps are indeed factor maps as the σ-

algebras are nested; in fact, for each (i, j) ∈ N2 the dynamical systems Y(i,j) are measure

theoretically isomorphic to the original system Y via the map Ψ(0,0),(i,j). We now have an

inverse system given by (N2,Y(i,j),Ψ(i,j),(k,l)) and proceed to show that Ŷ is the inverse

limit of this system, via the join construction above.

Let us denote by B(i,j) the σ-algebra T iSj(BY ) and recall that the σ-algebra for Ŷ is
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generated by cylinders in Z2 that define vertical and horizontal two sided sequences in

ΣMT
and ΣMS

respectively. Note that for each (i, j) ∈ N2 the σ-algebra B(i,j), for the

system Y(i,j), is generated by cylinders in the restriction to (a, b) ∈ Z2 where a ≥ i and

b ≥ j. Therefore B
Ŷ

=
∨

(i,j)∈N2 B(i,j), and hence we may apply theorem 3.11 to conclude

that Ŷ is indeed the inverse limit of (N2,Y(i,j),Ψ(i,j),(k,l)).

We now prove two results that carry over to our inverse limit system, Ŷ, to utilise in

our proof of Rudolph’s theorem; namely that the system Ŷ is jointly ergodic with respect

to T and S and has the same entropy as its factors, i.e. the same entropy as Y. The

following two lemmas are in fact much more general and hold for arbitrary inverse limits

of dynamical systems.

For use in the proof of the following lemma, we remark that a variant of Von Neumann’s

mean ergodic theorem that holds for our definition of joint ergodicity. In particular we

have the following characterisation:

Theorem 3.12. An invariant Borel probability measure for a dynamical system

(X,B, µ, (T, S)) is jointly ergodic if and only if for all A,B ∈ B we have that

lim
n→∞

1

n2

n−1∑
i,j=0

µ(A ∩ T−iS−j(B))→ µ(A)µ(B).

Lemma 3.13. The dynamical system Ŷ is jointly ergodic with respect to the transforma-

tions T and S.

Proof. By the above characterisation of joint ergodicity we have that Ŷ is ergodic if and

only if we have that for any A,B ∈ B
Ŷ

lim
n→∞

1

n2

n−1∑
i,j=0

µ̂(A ∩ T−iS−j(B))→ µ̂(A)µ̂(B).

Via the join characterisation of the inverse limit Ŷ and that fact that
⋃

(i,j)∈N2 B(i,j) is

dense in B
Ŷ

(in the sense that for any A ∈ B
Ŷ

and ε > 0 there is some Ã ∈
⋃

(i,j)∈N2 B(i,j)

such that µ̂(A ∆ Ã) < ε), it is sufficient to show that the above limit holds for any

Ã, B̃ ∈
⋃

(i,j)∈N2 B(i,j). To see this, let ε > 0 and Ã, B̃ ∈
⋃

(i,j)∈N2 B(i,j) approximate

A,B ∈ B
Ŷ

(i.e. µ̂(A∆ Ã) < ε
2 and µ̂(B ∆ B̃) < ε

2), then by the following calculation;

|µ̂(A ∩ T−iS−j(B))− µ̂(Ã ∩ T−iS−j(B̃))| ≤ µ̂([A ∩ T−iS−j(B)] ∆ [Ã ∩ T−iS−j(B̃)])

≤ µ̂([A∆Ã] ∪ [T−iS−j(B)∆T−iS−j(B̃)]) < ε.
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As we know that each factor Y(i,j) is isomorphic to the ergodic system Y, the above limit

indeed holds for each Ã, B̃ ∈
⋃

(i,j)∈N2 B(i,j). Thus, by the calculation above, the limit

holds for the system Ŷ, and hence it is ergodic.

Lemma 3.14. The measure theoretic entropies of the inverse limit system Ŷ and the

system Y coincide.

Proof. As we are viewing the factors Y(i,j) as being the same system as Ŷ equipped with

different (sub-)σ-algebras there is no ambiguity about the measure involved. Thus, let

us for this proof denote the entropy of Ŷ as ĥ((T, S)) and that of Y(i,j) as h(i,j)((T, S)).

Furthermore let us set h(0,0)((T, S)) = h((T, S)) to be the entropy of Y. Let us note

that as the B(i,j) are sub-σ-algebras of B
Ŷ

we have that ĥ((T, S)) ≥ h(i,j)((T, S)) for any

(i, j) ∈ N2.

By definition of entropy, for any ε > 0 there exists some finite partition α in B
Ŷ

such that

ĥ((T, S), α) ≥ ĥ((T, S))− ε
2 . Now as the B(i,j) are a nested and increasing (with respect to

the pre-ordering <) sequence that generates B
Ŷ

, we may find a finite partition β, belonging

to some B(i,j), such that h(i,j)((T, S), β) ≥ ĥ((T, S), α) − ε
2 . Thus we may conclude that

h(i,j)((T, S)) ≥ ĥ((T, S))−ε, but as the choice of ε was arbitrary, h(i,j)((T, S)) ≥ ĥ((T, S)).

As all factors Y(i,j) are isomorphic to Y, in particular they share the same entropy and

hence h((T, S)) = ĥ((T, S)).

To conclude this section we make the following observation. As the inverse limit system

Ŷ arises uniquely from the space Y, we may now focus on these two spaces of arrays in

order to obtain results about T; via our correspondence that was established in section 2.

4 Disintegration of Measures, Symmetric Points and Weak

Convergence

In this section, we will introduce the notions of disintegration of measures and that of

symmetric points for the arrays in Ŷ . This is done in order to show that in the case that

an array is symmetric, an appropriately defined sequence of measures on the circle converge

in the weak sense to the Lebesgue measure. We then conclude this section by showing that

if almost every point is symmetric, then our measure on the circle is Lebesgue. In section

5 we will establish that in the case of positive entropy, almost every point is symmetric,

completing our result.

The role that the symmetric points play in the proof of Rudolph’s theorem is crucial,

and though a property about arrays in Ŷ , they act as the key property distinguishing the

Lebesgue measure on the circle. In order to construct our desired sequence of measures

on the circle, we will need to first introduce the notion of disintegration of measures. To
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aid us in the construction and characterisation of these so called disintegrated measures

let us recall the notion of conditional expectation from probability theory.

For a probability space (X,B, µ), we shall denote by L1(X,B, µ) the equivalence classes

of integrable functions on X, with equivalence defined by equality almost everywhere. We

also let L1(X,B, µ) denote the set of integrable functions on X and C(X) denote the

continuous functions on X.

Definition 4.1. Let (X,B, µ) be a probability space, A ⊆ B a σ-algebra and f ∈ L1(X,B, µ).

The conditional expectation of the function f with respect to the σ-algebra A is the function

E(f | A) ∈ L1(X,A, µ), such that for any A ∈ A we have that

∫
A
fdµ =

∫
A
E(f | A)dµ.

(We shall, when necessary, write Eµ(f | A) in order to specify which measure we are

working with.)

We now collect some properties of the above defined conditional expectation that will aid

us in the proof of the disintegration theorem; we will not provide proofs for these results

as they are all well established and may be found in numerous textbooks on the subject,

for example in [EW].

Proposition 4.2. Let (X,B, µ) be a probability space, A ⊆ B a σ-algebra and f ∈
L1(X,B, µ). The conditional expectation of f with respect to A satisfies the following

properties:

1. The function E(f | A) ∈ L1(X,A, µ) exists and is unique.

2. The mapping E( | A) : L1(X,B, µ) → L1(X,A, µ) defines a positive, continuous

linear operator with operator norm equal to 1.

3. infx∈X f(x) ≤ E(f | A)(x) ≤ supx∈X f(x) for almost every x ∈ X.

The following theorem is pervasive throughout probability theory and may be established

in more generality than we will do so here; details of which may be found for example in

[EW] and [Hoc]. The formulation that we give here is adapted from chapter 5 of [EW]

and section 7 of [Mo].

Theorem 4.3. (The disintegration of measures) Let (X,B, µ) be a Borel probability space

and A ⊆ B be a countably generated σ-algebra. Then there exists a set D ⊆ X of full

measure (µ(D) = 1) such that for every x ∈ D there is a probability measure, denoted by µx

(though we shall denote it by µAx in order to specify the σ-algebra), called the disintegration
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of µ with respect to A, and the following properties hold:

1.

E(f | A)(x) =

∫
X
f(y)dµx(y)

for x ∈ D and for any f ∈ L1(X,B, µ). Furthermore, we have that the mapping[
x 7→

∫
X f(y)dµx(y)

]
is A-measurable and for any A ∈ A we have

∫
A

∫
X
f(y)dµx(y)dµ(x) =

∫
A
fdµ.

2. For x ∈ D we have that µx([x]A) = 1. Furthermore, for any x, y ∈ Y such that

[x]A = [y]A we have that µx = µy.

3. The first property, restricted to a dense subset of functions in C(X), uniquely deter-

mines µx for µ almost every x ∈ X.

(The reason property 3. is not stated for the set D is as follows: If we have two systems

of measures, µx and µ̃x defined on full measure sets D and D̃ respectively, then 3. states

there is some full measure set D̂ ⊆ D ∩ D̃ such that for x ∈ D̂ we have µx = µ̃x.)

Proof. Firstly, let us suppose that {fn}n∈N, with f0 ≡ 1, is a dense set of functions in C(X)

that forms a vector space over the rational numbers. Now for every i ≥ 0 we have that

E(fi|A) is a well defined function for every point in a full measure set, D ⊆ X. Applying

the above recorded properties of conditional expectation, by defining Λx(fi) = E(fi|A)(x)

for every x ∈ D we see that we may extend Λx to a positive, continuous linear functional

on C(X) with ||Λx||op ≤ 1. Thus, for each x ∈ D, by applying the Riesz-Markov-Kakutani

representation theorem (a short proof of which may be found in [S]) to the functional Λx,

we have that there exists a Borel measure, µx, on X such that for each f ∈ C(X),

Λx(f) =

∫
X
fdµx.

Now noting that for each x ∈ D we have Λx(1) = E(1|A) ≡ 1, we see that the µx are

indeed probability measures on X. Thus we have established that property 1. holds for

the functions {fn}n∈N.

For each f ∈ C(X) there is some subsequence, (fnk), of the functions {fn}n∈N that

converges uniformly to f . Now we may use the dominated convergence theorem to establish

that property 1. holds for all functions in C(X); this follows by property 1. of the

conditional expectation in proposition 5.2.

If property 1. holds for indicator functions for Borel sets, then by considering simple

functions and applying the monotone convergence theorem, property 1. holds for any
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positive L1(X,B, µ) function. For each f ∈ L1(X,B, µ) we may write f = f+− f−, where

f+, f− ≥ 0 are in L1(X,B, µ), and hence it is sufficient to prove property 1. for indicator

functions of Borel sets. To do this we will need to use the monotone class theorem, which

we briefly introduce now; a detailed proof of the theorem may be found in chapter 6 of

[Li].

A monotone class is a class of sets that is closed under taking countable monotone unions

and intersections; the monotone class theorem then states that for an algebra, A, the

smallest monotone class that contains A is σ(A) (the smallest σ-algebra generated by A).

Note now that for any open or closed set, A ⊆ X, we may find an increasing subsequence

of the {fn}n∈N that converge to the indicator function, χA; so property 1. holds for χA.

For any open set, O, and closed set, C, observe that O ∩ C is the countable intersection

of open sets (a Gδ set). Hence by the linearity of property 1., we have that for any set of

the form R = tni=1Oi ∩ Ci (for open sets, Oi, and closed sets, Ci), the indicator function,

χR satisfies property 1.. It is not hard to show that sets, R, of the above form form an

algebra (see page 140 of [EW] for details). We shall denote this algebra by R, and then

note that B = σ(R). By defining the set

M = {B ∈ B | χB satisfies property 1.}

we then have, by the monotone convergence theorem, that M is a monotone class. Ap-

plying the monotone class theorem we see that B ⊆M; establishing property 1. holds for

general f ∈ L1(X,B, µ).

(Note that we have implicitly used property 2. of the conditional expectation from propo-

sition 5.2 in order to guarantee that the mapping
[
x 7→

∫
X f(y)dµx(y)

]
is A-measurable.)

We now turn our attention to the second property. As A is countably generated, we have

that A = σ({Ai}i∈N), for some Ai ∈ A, and by property 1. we see that for every x ∈ D
and i ∈ N

µx(Ai) = E(χAi | A)(x) = χAi(x).

Hence by writing the atom, [x]A =
⋂
x∈Ai Ai∩

⋂
x/∈Ai X\Ai, we see that indeed µx([x]A) =

1. Now if [x]A = [y]A for some x, y ∈ D, then by A-measurability of the mapping[
x 7→

∫
X f(y)dµx(y)

]
, we must have that (as the sub-σ-algebra A doesn’t distinguish

between such x and y) for any f ∈ C(X)

∫
X
fdµx =

∫
X
fdµy.

By again appealing to the Riesz-Markov-Kakutani representation theorem, we have that
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µx = µy as desired.

Finally we establish the third property. Suppose that {fn}n∈N is dense in C(X) and that

we have two systems of measures, {µx | x ∈ D} and {νx | x ∈ D̃}, satisfying property 1.

for two full measure sets D, D̃ ⊆ X respectively. There then exists some full measure set

D̂ ⊆ D ∩ D̃, such that for every x ∈ D̂ and n ∈ N we have

∫
X
fndµx = E(fn | A)(x) =

∫
X
fndνx.

We may then use density of the {fn}n∈N, along with the dominated convergence theorem,

to see that for every x ∈ D̂ and f ∈ C(X) we have

∫
X
fdµx = E(f | A)(x) =

∫
X
fdνx.

So arguing as before for property 2. we conclude that µx = νx for every x ∈ D̂.

Let us also establish a corollary that will be helpful in allowing us to establish key prop-

erties for our later defined sequence of measures.

Corollary 4.3.1. (Corollary 5.24 in [EW]) If φ : (X,BX , µ) → (Z,BZ , ν) is a measure

preserving map between two Borel probability spaces, and C ⊆ BZ is a countably generated

σ-algebra, then for almost every x ∈ X we have that

φ∗µ
φ−1(C)
x = νCφ(x).

(where φ∗ denotes push-forward of the measure by φ, i.e. φ∗µ(E) := µ(φ−1(E))).

Proof. First note that by the defining property of conditional expectation (property 1.

of proposition 4.2.) and the fact that, for each f ∈ L1(Z,BZ , ν), E(f | C) ◦ φ is φ−1(C)-
measurable we have

Eν(f | C) ◦ φ = Eµ(f ◦ φ | φ−1A).

Thus, by applying the disintegration theorem, we have that for µ almost every x ∈ X and

every f in a countable dense subset of C(Y ):

∫
X
f dνAφ(x) = Eµ(f | C)(φ(x)) =

∫
X
f ◦ φ dµφ−1A

x =

∫
X
f d(φ∗µ

φ−1A
x ).

And so, by arguing as in the proof of theorem 4.3., we establish the desired equality.
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By viewing BY as a sub-σ-algebra of B
Ŷ

we may apply the disintegration theorem to pro-

duce measures µ̂ŷ, supported entirely on the atom [ŷ]BY , for µ̂ almost every ŷ ∈ Ŷ . Recall

that by considering the restriction mapping ψ : Ŷ → Y we have that [ŷ]BY = ψ−1(ψ(ŷ));

equivalently [ŷ]BY is the set of all arrays in Ŷ that give the same ΣN2
restriction.

Remark 4.4. We have that ψ−1(ψ(ŷ)) = ϕ̂−1(ϕ̂(ŷ)) for µ̂ almost every ŷ ∈ Ŷ . This

follows from the definition of ϕ̂, as we know that ϕ is a one-to-one correspondence between

Y and T outside of the set V , which has zero measure.

We now consider our invertible dynamical system Ŷ = (Ŷ ,B
Ŷ
, µ̂, (T, S)). For a given

ŷ ∈ Ŷ we now ask the following; for n ∈ N, what possible arrays in Ŷ after an application

of T−n give the same ΣN2
restriction as our original array ŷ after an application of T−n?

This question above is equivalent to asking which arrays in Ŷ give the same pre-image

of ϕ̂(ŷ) under the action of T−n on the circle. Each of these pre-images may be written

in the form ϕ̂(T−n(ŷ)) + t
pn (mod 1) for integer values 0 ≤ t ≤ (pn − 1) (where we are

implicitly using remark 2.4.).

We then note that for any such t above, Tn(ϕ̂−1(ϕ̂(T−n(ŷ)) + t
pn )) is the set of arrays in

Ŷ that after an application of T−n give the pre image, ϕ̂(T−n(ŷ)) + t
pn , when viewed as

points on the circle. Furthermore, let us note that any of the above arrays will belong to

the same atom of BY as our original array ŷ. Therefore, for distinct values of t, the above

sets are disjoint and partition ψ−1(ψ(ŷ)) = [ŷ]B, and so we have that

pn−1⊔
t=0

[
Tn
(
ϕ̂−1

(
ϕ̂
(
T−n(ŷ)

)
+

t

pn

))]
= ψ−1(ψ(ŷ)) = [ŷ]B.

As mentioned above, we apply the disintegration theorem to the Borel probability space

(Ŷ ,B
Ŷ
, µ̂) with the sub-σ-algebra BY , which is countably generated by the cylinder sets

in ΣN2
. In doing so we find a full measure set, D, of arrays in Ŷ , such that for each ŷ ∈ D

µ̂ŷ

(
pn−1⊔
t=0

[
Tn
(
ϕ̂−1

(
ϕ̂
(
T−n(ŷ)

)
+

t

pn

))])
= µ̂ŷ([ŷ]B) = 1.

We are finally ready to introduce our sequence of measures that will play a crucial role

in distinguishing the Lebesgue measure. For each 0 ≤ t ≤ (pn − 1) we consider the

value of µ̂ŷ(T
n(ϕ̂−1(ϕ̂(T−n(ŷ)) + t

pn ))) in [0, 1] in order to define the following probability

distribution, δ(ŷ, n), on the points {0, 1
pn , ...,

pn−1
pn } by setting:

δ(ŷ, n)

(
t

pn

)
:= µ̂ŷ

(
Tn
(
ϕ̂−1

(
ϕ̂
(
T−n(ŷ)

)
+

t

pn

)))
.
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By property 1. of the disintegration of measure theorem we may also interpret the δ

distributions as conditional expectations, in the following sense:

δ(ŷ, n)

(
t

pn

)
= E

(
χTn(ϕ̂−1(ϕ̂(T−n(ŷ))+ t

pn
))

∣∣∣∣ BY)(ŷ).

With this perspective, for fixed ŷ ∈ D we may view the δ distributions as encoding the

probability that given a specific point on the circle, ϕ̂(ŷ), it came from a the pre-image

ϕ̂(T−n(ŷ)) + t
pn , under the action of Tn on the circle. We shall therefore call the value

δ(ŷ, n)
(
t
pn

)
the probability of seeing the pre-image ϕ̂(T−n(ŷ)) + t

pn (given the point ϕ̂(ŷ)).

We now prove several properties of these newly defined δ distributions, before introducing

the notion of symmetric points that will be essential for us to establish our desired results.

Lemma 4.5. The δ probability distributions satisfy the following properties for any ŷ ∈ D
and n ∈ N:

1. If ŷ1, ŷ2 ∈ D are such that [ŷ1]BY = [ŷ2]BY (i.e. the two arrays give the same point

in T under ϕ̂) then δ(ŷ2, n) differs from δ(ŷ1, n) by a translation in the argument

modulo 1, given by

ϕ̂(T−n(ŷ1))− ϕ̂(T−n(ŷ2))

(i.e. we have that δ(ŷ1, n)
(
t
pn

)
= δ(ŷ2, n)

(
t
pn + ϕ̂(T−n(ŷ1))− ϕ̂(T−n(ŷ2))

)
.

2. δ(ŷ, n) determines δ(ŷ, k) for all k ≤ n via the formula

δ(ŷ, n− 1)

(
t

pn−1

)
=

∑
s=t (mod pn−1)

δ(ŷ, n)

(
s

pn

)
.

3.

δ(S(ŷ), n)

(
qt

pn

)
= δ(ŷ, n)

(
t

pn

)
(where qt

pn is taken (mod 1)).

4. The distribution δ(Tn(ŷ), 2n) determines δ(T i(ŷ), n+ i) for 0 ≤ i ≤ n.

(We note that only property 3. will require the coprime assumption on p and q).

Proof. If ŷ1 and ŷ2 are such that [ŷ1]B = [ŷ2]B, then by property 2. of theorem 4.3 on

the disintegration of measures, we have that µŷ1 = µŷ2 . Thus by construction of the δ

distributions we see that
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δ(ŷ1, n)

(
t

pn

)
= µ̂ŷ1

(
Tn
(
ϕ̂−1

(
ϕ̂
(
T−n(ŷ1)

)
+

t

pn

)))

= µ̂ŷ2

(
Tn
(
ϕ̂−1

(
ϕ̂
(
T−n(ŷ1)

)
+

t

pn

)))

= µ̂ŷ2

(
Tn

[
ϕ̂−1

(
ϕ̂(T−n(ŷ2)) +

[
t

pn
+ ϕ̂(T−n(ŷ1))− ϕ̂(T−n(ŷ2))

])])

= δ(ŷ2, n)

(
t

pn
+ ϕ̂

(
T−n(ŷ1)

)
− ϕ̂

(
T−n(ŷ2)

))
,

establishing that property 1. holds.

To prove the other three properties, we will need to make use of the conditional expectation

perspective of the δ distributions as discussed above. We first fix ŷ ∈ D and n ≥ 0.

For each fixed 0 ≤ t ≤ pn−1, consider all pre-images, ϕ̂(T−n(ŷ)) + s
pn , that map forward

under the action of T to the pre-image ϕ̂(T−(n−1)(ŷ)) + t
pn−1 in question. Let us denote

by T−(n−1)(ŷ)t one possible array with ϕ̂(T−(n−1)(ŷ)t) = ϕ̂(T−(n−1)(ŷ)) + t
pn−1 (i.e. an

array in Ŷ whose point on T corresponds to the point ϕ̂(T−(n−1)(ŷ)) + t
pn−1 via ϕ̂). The

values of s considered above are precisely the p such values of s = t (mod pn−1); therefore,

we note that

[T−(n−1)(ŷ)t]B =
⊔

s=t (mod pn−1)

[
Tn
(
ϕ̂−1

(
ϕ̂
(
T−n(ŷ)

)
+

s

pn

))]
.

Now for each s in question, δ(ŷ, n)
(
s
pn

)
is the probability that ϕ̂(ŷ) arises from a specific

pre-image ϕ̂(T−n(ŷ)) + s
pn . With our probabilistic interpretation, this is then equal to the

probability of seeing the pre-image ϕ̂(T−(n−1)(ŷ)) + t
pn−1 multiplied by the probability of

seeing ϕ̂(T−n(ŷ)) + s
pn given that we have seen ϕ̂(T−(n−1)(ŷ)) + t

pn−1 . Interpreting this in

terms of the δ distributions we then have that

δ(ŷ, n)

(
s

pn

)
= δ(ŷ, n− 1)

(
t

pn−1

)
· µT−(n−1)(ŷ)t

(
Tn
(
ϕ̂−1

(
ϕ̂
(
T−n(ŷ)

)
+

s

pn

)))

We then establish that property 2. holds, for a fixed value of t, by summing over all values

of s = t (mod pn−1) and noting that

µT−(n−1)(ŷ)t

( ⊔
s=t (mod pn−1)

[
Tn
(
ϕ̂−1

(
ϕ̂
(
T−n(ŷ)

)
+

s

pn

))])
= 1.
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For the third property, we first note that the map ϕ̂◦T−n : Ŷ → T is a measure preserving

transformation between two Borel probability spaces and so we may apply corollary 4.3.1.

to the countably generated σ-algebra p−nBT ⊆ BT to see that

(ϕ̂ ◦ T−n)∗µ̂
B
Ŷ

ŷ = µp
−nBT
ϕ̂(T−n(ŷ))

.

In the interests of clarity we make the following notational changes; let us omit the su-

perscript σ-algebras in the measures and write y
pn = p−ny for ϕ̂(T−n(ŷ)). With these

changes, we then note that µp−ny is supported on the points
{ y
pn + t

pn

}pn−1

t=0
, and so by the

above equality we have that

µp−ny

(
y

pn
+

t

pn

)
= µ̂ŷ

(
Tn
(
ϕ̂−1

(
y

pn
+

t

pn

)))
= δ(ŷ, n)

(
t

pn

)

Now by the co-primality assumption on p and q we have that q−1p−nBT = p−nBT; so ap-

plying corollary 4.3.1 to the measure preserving transformation S : T→ T (multiplication

by q (mod 1)) we see that µqp−ny = S∗µp−ny.

Then, as application of S in Ŷ corresponds to multiplication by q on T (via ϕ̂ ◦ T−n), we

also have that δ(S(ŷ), n)
(
qt
pn

)
= µqy

(
qy
pn + qt

pn

)
and so we conclude that

δ(S(ŷ), n)

(
qt

pn

)
= µqy

(
qy

pn
+
qt

pn

)
= S∗µy

(
qy

pn
+
qt

pn

)
= µy

(
y

pn
+

t

pn

)
= δ(ŷ, n)

(
t

pn

)

as desired.

We again take the probabilistic perspective on the δ distributions. Writing δ(Tn(ŷ), 2n)
(

t
p2n

)
as the probability of seeing the pre-image ϕ̂

(
T−n(ŷ)

)
+ t
p2n

, given that we’ve seen the point

ϕ̂(T i(ŷ)), multiplied by the probability of seeing that point, ϕ̂(T i(ŷ)), as a pre-image, given

that we’ve seen ϕ̂(Tn(ŷ)). Writing this in terms of the δ distributions we have that

δ(Tn(ŷ), 2n)

(
t

p2n

)
= δ(T i(ŷ), n+ i)

(
k

pn+i

)
· δ(Tn(ŷ), n− i)(0).

Where we are considering values of t = kpn−i for each 0 ≤ k ≤ pn+i − 1.

If we know δ(Tn(ŷ), 2n), then by property 2. proven above we also have knowledge of

δ(Tn(ŷ), n−i), and so therefore by the above relation we may determine δ(T i(ŷ), n+i).

We are now ready to define the symmetric points for our space Ŷ before proving the fol-

lowing properties; the set of symmetric points is invariant under the action of T and S

(hence of measure 0 or 1 by our ergodicity assumption), that if ŷ is symmetric then δ(ŷ, n)
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converges weakly to the Lebesgue measure on T, and finally, that if almost every array in

Ŷ is symmetric, then our measure is Lebesgue.

Definition 4.6. We say that an array ŷ ∈ Ŷ is symmetric if there exist distinct arrays

ŷ1 6= ŷ2 such that the following two properties hold:

1. ϕ̂(ŷ) = ϕ̂(ŷ1) = ϕ̂(ŷ2),

2. For any n,m ∈ N we have that δ(Tm(ŷ1), n) = δ(Tm(ŷ2), n).

The reasoning behind calling such an array ŷ symmetric, is due to the δ distribution’s

behaviour, with respect to the pre-images under the action of T , for the two arrays ŷ1

and ŷ2 when viewed as points on the circle. As the arrays are distinct, there must exist

some n ∈ N such that ϕ̂(T−n(ŷ1)) 6= ϕ̂(T−n(ŷ2)). However, property 2. in the definition

of a symmetric point guarantees that the δ distributions assign the same weighting to

these two pre-images. With this in mind, we may, loosely speaking, think of symmetric

arrays as corresponding to pairs of distinct arrays that are indistinguishable as far as the

δ distributions are concerned.

Lemma 4.7. The set of symmetric points in Ŷ is invariant under the action of T and S

and so, by ergodicity of Ŷ, is of measure 0 or 1.

Proof. To see that the set of symmetric points is invariant under T , note that for a given

symmetric point ŷ we may take the points T (ŷ1) and T (ŷ2) as the points in the definition

to ensure that T (ŷ) is symmetric.

To establish S invariance we need to exploit property 3. of the δ probability distributions

from lemma 4.5.; for a given symmetric point ŷ we take the points S(ŷ1) and S(ŷ2) and

note that for any 0 ≤ t ≤ (pn − 1),

δ(TmS(ŷ1), n)

(
qt

pn

)
= δ(Tm(ŷ1), n)

(
t

pn

)
= δ(Tm(ŷ2), n)

(
t

pn

)
= δ(TmS(ŷ2), n)

(
qt

pn

)
.

Thus, as p and q are coprime, we conclude that δ(TmS(ŷ1), n) = δ(TmS(ŷ2), n) and hence

S(ŷ) is symmetric. Note here that we have implicitly used the fact that the transformations

T and S commute.

Finally, as both transformations T and S are invertible on the space Ŷ and the set of

symmetric points is invariant under both transformations, the ergodicity assumption on

the measure µ̂ ensures the set is of measure 0 or 1.

We now establish a small number theoretic lemma to aid us in showing the weak conver-
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gence of the δ measures to the Lebesgue measure for symmetric arrays.

Lemma 4.8. If a =
∑n

i=1
ai
pi

(mod 1) for some n ≥ 1 with ai ∈ Z for all i ∈ {1, ..., n},
an 6= 0 and −p < ai < p, then if a = u

v in least terms, v ≥ 2n.

Proof. We will prove this result by induction on n; note that in the case n = 1 we have

that a = a1
p and by assumption p ≥ 2, so the result holds. Now assuming the result holds

for some natural number n− 1 we see that

ap = p ·
n∑
i=1

ai
pi

=
n−1∑
i=1

ai+1

pi
(mod 1).

If in least terms ap = ũ
ṽ then, by the inductive assumption, we have that ṽ ≥ 2n−1. Note

that if a = u
v in least terms, any prime divisor of v must divide p by the definition of a.

We then see that ṽ has at least one fewer prime in its prime decomposition than v does.

Therefore v ≥ 2ṽ ≥ 2n and so by induction the result holds for all n ∈ N.

With all our prior work we are now able to prove a crucial lemma, to do this we will need

to utilise the Riemann integral of continuous functions. We note that we may view any

continuous function, f , on T as a continuous function defined on the interval [0, 1], subject

to the condition that f(0) = f(1).

Lemma 4.9. If ŷ ∈ Ŷ is a symmetric point then the measures δ(ŷ, n) weakly converge to

the Lebesgue measure, λ, on T as n→∞.

Proof. Let ŷ1 and ŷ2 be two points satisfying the conditions for ŷ to be a symmetric

point. As ŷ1 6= ŷ2 there exists some smallest natural number, i ≥ 0, independent of

n, such that ŷ1(−i, 0) 6= ŷ2(−i, 0), or we would contradict lemma 2.3. about horizontal

rays determining above symbols. By property 1. of the δ distributions we know that

δ(ŷ, n) differs from the distribution δ(ŷ1, n) by an argument translation (mod 1) of the

form, ϕ̂(T−n(ŷ1)) − ϕ̂(T−n(ŷ)). We also know by the symmetric condition on ŷ that in

particular δ(ŷ1, n) = δ(ŷ2, n) for all n ≥ 0. Thus as δ(ŷ, n) also differs from δ(ŷ2, n) by a

translation (mod 1) of the form ϕ̂(T−n(ŷ2))− ϕ̂(T−n(ŷ)) this implies that the distribution

δ(ŷ, n) is invariant under translation by ϕ̂(T−n(ŷ2))− ϕ̂(T−n(ŷ1)) (mod 1). Explicitly, we

have that

δ(ŷ, n)

(
t

pn
+ ϕ̂(T−n(ŷ1))− ϕ̂(T−n(ŷ))

)
= δ(ŷ, n)

(
t

pn
+ ϕ̂(T−n(ŷ2))− ϕ̂(T−n(ŷ))

)
.

Now ϕ̂(T−n(ŷ2))− ϕ̂(T−n(ŷ1)) is of the form an =
∑n

i=1
ai
pi

(mod 1) (as both ϕ̂(T−n(ŷ1))
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and ϕ̂(T−n(ŷ2)) correspond to pre-images in the set T−n(ϕ̂(ŷ)) and hence differ (mod

1) by some integer multiple of 1
pn ). We then apply lemma 4.6. and see that the group

of transformations (mod 1) that act invariantly on δ(ŷ, n) is of order at least 2n−i−1.

Furthermore, this group of transformations has a least element, mn ≤ 1
2n−i−1 . Let us

denote by In the finite additive group generated by mn, and note that translation in the

argument by any element of In leaves δ(ŷ, n) invariant.

If we denote by Rα the rotation by α ∈ In (mod 1) on T, we then have that for any

continuous function, f , on the circle

∫
T
f(x)dδ(ŷ, n)(x) =

∫
T
Rαf(x)dδ(ŷ, n)(x) =

1

|In|
∑
α∈In

∫
T
Rαf(x)dδ(ŷ, n)(x).

By the above discussion we have that the order, |In|, of the group of In is bounded below

by 2n−i−1. By viewing f as a continuous function on [0, 1] (with f(0) = f(1)) with a

partition of the interval given by 1
|In| (i.e. into |In| equal intervals of length |In|) we see

that

lim
n→∞

1

|In|
∑
α∈In

Rαf(x) =

∫
[0,1]

fdλ =

∫
T
fdλ

by definition of the Riemann integral. Hence we have that for any continuous function f

on T

lim
n→∞

∫
T
f(x)dδ(ŷ, n)(x) =

∫
T
fdλ,

which is precisely the definition of δ(ŷ, n) weakly converging to λ (swapping the integral

and limit here is justified by the dominated convergence theorem, as f is bounded on

T).

We now present the final result of this section; first let us recall that for any Borel proba-

bility space (X,B, µ) we have the following chain of equalities

µ(E) =

∫
E

1dµ(x) =

∫
X
χE(x)dµ(x) =

∫
X
δx(E)dµ(x).

Where χE denotes the indicator function of some measurable set E, and δx denotes the

Dirac point measures for x ∈ X.

Theorem 4.10. If µ̂ almost every ŷ ∈ Ŷ is a symmetric point, then the corresponding

measure, µ, on the circle is the Lebesgue measure, λ.
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Proof. Let us again denote by Rα the rotation by α ∈ R (mod 1) on T. For almost ev-

ery ŷ ∈ Ŷ and n ≥ 0, the probability measure δ(ŷ, n) is supported on

{
0, 1

pn , ...,
pn−1
pn

}
,

and so the measure
(
Rϕ̂(T−n(ŷ))

)
∗δ(ŷ, n) is supported on

{
ϕ̂(T−n(ŷ)), ϕ̂(T−n(ŷ)) + 1

pn , ...,

ϕ̂(T−n(ŷ)) + pn−1
pn

}
. By lemma 4.9., and the translation invariance of the Lebesgue mea-

sure, we conclude that, for almost every ŷ ∈ Ŷ ,
(
Rϕ̂(T−n(ŷ))

)
∗δ(ŷ, n) converges weakly to

the Lebesgue measure, λ, as n→∞.

Recall that in the proof of property 4. in lemma 4.5. we established that (ϕ̂◦T−n)∗µ̂
B
Ŷ

ŷ =

µp
−nBT
ϕ̂(T−n(ŷ))

, which in particular establishes that for E ∈ BT we have

µp
−nBT
ϕ̂(T−n(ŷ))

(
E
)

=
(
Rϕ̂(T−n(ŷ))

)
∗δ(ŷ, n)

(
E
)

(this is merely a rephrasing of the calculation in the middle of page 24; where µp
−nBT
ϕ̂(T−n(ŷ))

(
E
)

is the sum over the values µp
−nBT
ϕ̂(T−n(ŷ))

(
ϕ̂(T−n(ŷ)) + t

pn

)
for which ϕ̂

(
T−n(ŷ)

)
+ t

pn ∈ E).

By property 1. of theorem 4.3. we may write, for each n ∈ N and E ∈ BT, that

µ(E) =

∫
T

∫
T
χE(z)dµp

−nBT
x (z)dµ(x) =

∫
T
µp

−nBT
x (E)dµ(x).

Now as the map ϕ̂ : Ŷ → T takes the measure µ̂ on Ŷ to the measure µ on T we have

µ(E) =

∫
T
µp

−nBT
x (E)dµ(x) =

∫
Ŷ
µp

−nBT
ϕ̂(ŷ) (E)dµ̂(ŷ);

furthermore, as we have that the map T−n : Ŷ → Ŷ is a bijection and µ̂ is T invariant (so

T−n preserves µ̂),

µ(E) =

∫
Ŷ
µp

−nBT
ϕ̂(ŷ) (E)dµ(ŷ) =

∫
Ŷ
µp

−nBT
ϕ̂(T−n(ŷ))

(E)dµ̂(ŷ).

Therefore, for each n ∈ N we have

µ(E) =

∫
Ŷ

(
Rϕ̂(T−n(ŷ))

)
∗δ(ŷ, n)

(
E
)
dµ̂(ŷ)

n→∞−−−→
∫
Ŷ
λ(E)dµ̂(ŷ) = λ(E)

(where we are using that limn→∞
∫
T χE(x)d

(
Rϕ̂(T−n(ŷ))

)
∗δ(ŷ, n)(x) =

∫
T χE(x)dλ(x) =

λ(E) as well as the dominated convergence theorem in order to swap the integral and the

limit).

So, for any E ∈ BT we have µ(E) = λ(E), i.e. µ = λ.
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5 Reducing to the Case of Zero Entropy

We would now like to show that under the assumption of positive entropy of one of the

transformations, µ̂ almost every point ŷ ∈ Ŷ is symmetric. Applying the theorem from

the previous section, we conclude that under this assumption our measure is Lebesgue,

completing our work. In order to show our desired results, we will need to extend the

theory of entropy from partitions to that of σ-algebras; for which we shall exploit our

theorem on the disintegration of measures.

The entropy theory for σ-algebras extends from that of entropy for partitions in a straight-

forward manner, via use of the disintegration theorem. Therefore, for the sake of brevity,

and also not to detract from the flow of the proof, we quote results regarding entropy the-

ory with respect to σ-algebras from the freely available and detailed book on the subject,

[ELW].

Recall that we denote the disintegration, given by theorem 5.3, of a measure µ onto a

σ-algebra, A, by measures µAx . For another σ-algebra C we shall still denote by [x]C , as in

definition 2.5., the atom of C containing x. In the following work, justified by example 2.9

in [ELW], we do not distinguish between a partition ξ and the σ-algebra that it generates,

σ(ξ).

Definition 5.1. (2.8. and 2.18. in [ELW]) For a Borel probability space, (X,B, µ), and

two countably generated sub-σ-algebras A, C ⊆ B we define the entropy of C given A to be

Hµ(C | A) = −
∫
X

log
[
µAx ([x]C)

]
dµ(x).

Furthermore, if A is strictly invariant, i.e. such that T−1(A) = A, then by first defining

hµ(T, ξ | A) = lim
n→∞

1

n
Hµ

(
n−1∨
i=0

T−i(ξ)

∣∣∣∣A
)

we may define the conditional entropy of T given A to be

hµ(T | A) = sup
{ξ |Hµ(ξ)<∞}

hµ(T, ξ | A).

We now will state the properties of entropy with respect to σ-algebras that we need, most

of which are in analogy with results about entropy with respect to partitions.

Proposition 5.2. (2.13., 2.17., 2.19., 2.20. and 2.21. in [ELW]) For a dynamical system,

(X,B, µ, T ), on a Borel probability space and countably generated sub-σ-algebras A, C and
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C̃ of B, the following properties of conditional entropy with respect to σ-algebras hold:

1. (Additivity) Hµ(C ∨ C̃ | A) = Hµ(C | A) +Hµ(C̃ | A ∨ C).

2. (Monotonicity) Hµ(C̃ | A ∨ C) ≤ Hµ(C̃ | A).

3. (Invariance) Hµ(C | A) = Hµ(T−1(C) | T−1(A)).

4. (Future formula) If A is strictly invariant and ξ is a countable partition of finite

entropy then

hµ(T, ξ | A) = Hµ

(
ξ

∣∣∣∣∣
∞∨
i=0

T−i(ξ) ∨ A

)
.

5. (Kolmogorv-Sinai Theorem) If (ξk)k∈N is a sequence of finite entropy partitions

such that ξk ⊆ σ(ξk+1) for all k ∈ N, and up to sets of zero measure either

B =
∨∞
k=1

∨∞
i=0 T

−i(ξk) or B =
∨∞
k=1

∨∞
i=−∞ T

−i(ξk), then we have that

hµ(T ) = lim
k→∞

hµ(T, ξk).

Furthermore, under the same assumptions, if A is strictly invariant then

hµ(T | A) = lim
k→∞

hµ(T, ξk | A).

6. (Abramov-Rokhlin formula) If (X,B, µ, T )
Ψ−→ (Z,BZ , ν, S) is a factor map (defined

analogously to definition 3.4.) then we have that

hµ(T ) = hν(S) + hµ(T | A),

where we identify (Z,BZ , ν, S) with the strictly invariant σ-algebra A = Ψ−1(BZ).

With the necessary definitions and properties established, we return to the setting of our

proof. Let us denote by P the partition of the set Ŷ determined by the symbol ŷ(0, 0),

and make the convention that every element of this partition has strictly positive measure

with respect to µ̂. Note that this partition directly corresponds to the partition given

by the Ij (from section 2) of T (i.e. the partition P tells us which Ij the point ϕ̂(ŷ) is

contained in). We shall first show that the partition P, while not generating for Ŷ, gives

the entropy for the system Ŷ in the following sense:

Lemma 5.3. (9.10. from [ELW] phrased in our terminology.) The partition P, while not

necessarily a generator for the dynamical system Ŷ = (Ŷ ,B
Ŷ
, µ̂, (T, S)) is such that
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hµ̂(T ) = hµ̂(T,P), hµ̂(S) = hµ̂(S,P).

Furthermore, by the Kolmogorov-Sinai theorem we have that for any strictly invariant

σ-algebra A,

hµ̂(T | A) = hµ̂(T,P | A), hµ̂(S | A) = hµ̂(S,P | A).

Proof. We first note that the σ-algebra C =
∨∞
i=−∞ T

−iP generates the Borel σ-algebra,

B
Ŷ

, under the action of S. Hence we may apply the Kolmogorov-Sinai theorem (property

5. of propisition 5.2.) to see that hµ̂(T ) = limn→∞ hµ̂(T, SnP).

As the transformation S is invertible on Ŷ, we have that µ̂(E) = µ̂(S−1S(E)) = µ̂(S(E))

by S invariance of µ̂; therefore, for each n ∈ N we have hµ̂(T, SnP) = hµ̂(T,P). Thus we

conclude that hµ̂(T ) = hµ̂(T,P); the argument for the entropy of S is symmetric to that

of T .

The final statement of the lemma follows by an identical argument; first conditioning

on the σ-algebra A and then exploiting the second statement of the Kolmogorov-Sinai

theorem.

Our next objective for the this section is to relate the entropy of the two transforma-

tions on the space Ŷ with respect to the measure µ̂. Then, if we can show that we have

zero entropy with respect to one of the transformations, we must have zero entropy for

the other. Consider the dynamical system (Ŷ ,A, µ̂, T ) for some strictly invariant sub-σ-

algebra A ⊆ B; let us denote the entropy of this system by hAµ̂ (T ). Similarly we write

hAµ̂ (S) for the entropy of the dynamical system (Ŷ ,A, µ̂, S) (we still denote by hµ̂(T ) the

entropy of the system (Ŷ ,B
Ŷ
, µ̂, T ), and similarly for hµ̂(S)).

Lemma 5.4. For any T and S strictly invariant sub-σ-algebra, A, of the system Ŷ we

have the following relation,

hAµ̂ (T ) =
log(p)

log(q)
hAµ̂ (S).

Proof. (proof of claim is 9.11 from [ELW]) Firstly, we claim that it is sufficient to prove

that hµ̂(T,P | A) = log(p)
log(q)hµ̂(S,P | A). We now show that the claim implies the desired

result. We use the Abramov-Rokhlin formula, property 6. of proposition 5.2, in order to

write

hµ̂(T,P) = hAµ̂ (T ) + hµ̂(T,P | A), hµ̂(S,P) = hAµ̂ (S) + hµ̂(S,P | A)
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(where we’ve implicitly used remark 3.5. from section 3).

Assuming that hµ̂(T,P|A) = log(p)
log(q)hµ̂(S,P|A) and rearranging, we then have the following:

hAµ̂ (T ) =
log(p)

log(q)
hAµ̂ (S) +

(
hµ̂(T,P)− log(p)

log(q)
hµ̂(S,P)

)
.

Then, by considering the trivial σ-algebra, N = {Ŷ , ∅}, we have that (see page 54 in

[ELW] for details)

hµ̂(T,P | N ) = hµ̂(T,P), hµ̂(S,P | N ) = hµ̂(S,P).

Therefore we establish that hAµ̂ (T ) = log(p)
log(q)h

A
µ̂ (S), proving the result.

In order to prove our claim we first bound the entropy of a finite partition; suppose that

α = {A1, ..., An} is a finite partition of some measure space (X,B, µ) into strictly positive

measure sets. We then note that the entropy of the partition satisfies

Hµ(α) = −
n∑
i=1

µ(Ai) log(µ(Ai)) ≤ log(n).

This follows by applying the weighted arithmetic-geometric mean inequality (a simple

consequence of Jensen’s inequality), as we have that

exp(Hµ(α)) =
n∏
i=1

(
1

µ(Ai)

)µ(Ai)

≤
n∑
i=1

µ(Ai)

(
1

µ(Ai)

)
= n.

We now consider the partition P as defined above. Note that for any n,m ≥ 1 the

partitions
∨n−1
i=0 S

−iP and
∨m−1
i=0 T−iP are comprised of intervals of length Lq(n) := 1

pqn

and Lp(m) := 1
qpm respectively.

Now as p and q are coprime, log(q)
log(p) is irrational, and so for each ε > 0 we may find an

n ∈ N such that
{

log(q)
log(p)n

}
< ε (where {x} denotes the fractional part of x). We then

define m =
⌊

log(q)
log(p)n

⌋
(where bxc is the largest integer less than or equal to x); allowing us

to conclude that

pm ≤ qn ≤ pm+ε

(where we have used that log(q)
log(p) = logp(q) and that logp(q)n = m+ {logp(q)n}).

For ε > 0 such that pε ≤ q
p , by defining n and m as above we have that, as p < q,
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Lp(m)

Lq(n)
=
pqn

qpm
≤ qn

pm
≤ pε ≤ q

p

and
Lq(n)

Lp(m)
=
qpm

pqn
≤ q

p
.

Thus, setting k := d qpe, we conclude that each interval in
∨n−1
i=0 S

−iP is contained in at

most k intervals, and hence belongs to a partition of size at most k, of
∨m−1
i=0 T−iP; and

visa versa. Hence by our above bound on entropy for finite partitions we have that

Hµ̂

(
n−1∨
i=0

S−iP

∣∣∣∣∣
m−1∨
i=0

T−iP

)
≤ log(k)

and

Hµ̂

(
m−1∨
i=0

T−iP

∣∣∣∣∣
n−1∨
i=0

S−iP

)
≤ log(k).

We now exploit the additivity and monotonicity of conditional entropy, given by properties

1. and 2. in proposition 5.2., to see that

Hµ̂

(
n−1∨
i=0

S−iP

∣∣∣∣∣A
)
≤ Hµ̂

(
n−1∨
i=0

S−iP ∨
m−1∨
i=0

T−iP

∣∣∣∣∣A
)

= Hµ̂

(
m−1∨
i=0

T−iP

∣∣∣∣∣A
)

+Hµ̂

(
n−1∨
i=0

S−iP

∣∣∣∣∣
m−1∨
i=0

T−iP ∨ A

)

≤ Hµ̂

(
m−1∨
i=0

T−iP

∣∣∣∣∣A
)

+Hµ̂

(
n−1∨
i=0

S−iP

∣∣∣∣∣
m−1∨
i=0

T−iP

)

≤ Hµ̂

(
m−1∨
i=0

T−iP

∣∣∣∣∣A
)

+ log(k)

(using non-negativity of entropy alongside additivity for the first inequality, additivity for

the equality, monotonicity for the second inequality and finally our bound for the third

inequality).

By dividing by n and taking the limit in the above calculation, we conclude

hµ̂(S,P | A) ≤ lim
n→∞

m

n
hµ̂(T,P | A) =

log(q)

log(p)
hµ̂(T,P | A).

Switching the roles of S and T in the above calculations see that
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hµ̂(T,P | A) ≤ lim
m→∞

n

m
hµ̂(S,P | A) =

log(p)

log(q)
hµ̂(S,P | A).

Therefore we have that

hµ̂(S,P | A) =
log(q)

log(p)
hµ̂(T,P | A),

proving the claim.

We now define H to be the smallest T and S strictly invariant σ-algebra for which, for any

n ≥ 0 and almost every ŷ ∈ Ŷ , all of the δ(ŷ, n) probability distributions are measurable

when viewed as functions.

For each n ∈ N we define Hn to be the smallest σ-algebra such that, for any ŷ ∈ Ŷ , the

δ(Tn(ŷ), 2n) are measurable when viewed as functions. Property 4. of the δ distributions

in lemma 4.5 implies that δ(Tn(ŷ), 2n) determines δ(T i(ŷ), n + i) for any 0 ≤ i ≤ n (in

particular δ(ŷ, n)). Therefore, the σ-algebras Hn are nested and refine in n to the above

defined σ-algebra, H.

Lemma 5.5. For any n ≥ 0, the transformation S acts periodically on the σ-algebra Hn;

in the sense that there exists a natural number in such that for any E ∈ Hn we have that

Sin(E) = E.

Proof. As the transformation S acts by multiplication by q, for every n ∈ N the pigeon-

hole principle guarantees that there exists two natural numbers k > l (dependent on n)

such that qk = ql (mod p2n). By setting in := k − l > 0 we have that Sin acts by the

identity, i.e. for any 0 ≤ t ≤ p2n − 1 we have that qint = t (mod p2n). Exploiting property

3. of the δ distributions inductively, for µ̂ almost every ŷ ∈ Ŷ we have that

δ(Sin(Tn(ŷ)), 2n)

(
qint

p2n

)
= δ(Tn(ŷ), 2n)

(
t

p2n

)
.

But by the above we see that qin t
p2n

= t
p2n

(mod 1) and hence that

δ(Sin(Tn(ŷ)), 2n) = δ(Tn(ŷ), 2n).

If application of the transformation Sin to an array in Ŷ leaves the δ distributions un-

changed as functions, this means that the action of Sin leaves the σ-algebra Hn unchanged

(by their construction as the smallest σ-algebra such that these δ distributions are mea-

surable). Hence, for any E ∈ Hn we have that Sin(E) = E.

34



As in lemma 5.4, letting hHµ̂ (S) denote the entropy of the dynamical system (Ŷ ,H, µ̂, S),

we establish the following corollary.

Corollary 5.5.1. For the dynamical system (Ŷ ,H, µ̂, S) we have that hHµ̂ (S) = 0.

Proof. We first note that the identity map on any measure space gives zero entropy; which

follows from the property that for k ∈ N we have that hµ(T k) = khµ(T ) for any dynamical

system (X,B, µ, T ). By lemma 5.4., as Sin acts by the identity, Id, on all Hn measurable

sets and as in ≥ 1;

in · hHnµ̂ (S) = hHnµ̂ (Sin) = hHnµ̂ (Id) = 0.

We then have that hHnµ̂ (S) = 0 and now show that this allows us to conclude hHµ̂ (S) = 0.

To do this we will exploit the fact that entropy of a transformation can be computed by

considering only finite partitions (lemma 1.19 in [ELW]). Thus, it is sufficient to prove

that for an arbitrary finite partition, ξ, in H we have hHµ̂ (S, ξ) = 0. We first fix ε > 0 and

note that the σ-algebra generated by the union of the Hn generates H. As ξ is a finite

partition in H, we may use theorem 4.16. from [W] (equivalently exercises 1.1.5. and

1.1.6. in [ELW]) to find a finite partition, ξn, in the union of the Hn, and hence in Hn for

some n ∈ N, such that

HHµ̂ (ξ | ξn) ≤ HHµ̂ (ξ | ξn) +HHµ̂ (ξn | ξ) < ε.

Now, as ξn ⊂ Hn we also have that hHµ̂ (S, ξn) ≤ hHnµ̂ (S) = 0. By proposition 1.17. in

[ELW] (the continuity bound) we have that

hHµ̂ (S, ξ) ≤ hHµ̂ (S, ξn) +HHµ̂ (ξ | ξn) < ε.

But as ε above was arbitrary, we have that hHµ̂ (S, ξ) = 0 for any finite partition, ξ, in H;

hence we conclude that hHµ̂ (S) = 0.

Lemma 5.6. If µ̂ almost every ŷ ∈ Ŷ is not symmetric then

T (P) ⊆ H ∨
∞∨
i=0

T−i(P).

Proof. As we’ve assumed that P consists only of µ̂ positive measure sets, T (P) must also.

If we assume that the inclusion doesn’t hold, then there must exist some set of strictly

positive measure, S ∈ T (P), such that for each point ŷ ∈ S, knowing δ(ŷ, n) for all n ≥ 0

and ϕ̂(ŷ) doesn’t determine the element of T (P) that contains ŷ.
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For each such ŷ ∈ S and fixed n ∈ N there must exist two distinct arrays, say ŷ1 6= ŷ2,

such that ϕ̂(ŷ) = ϕ̂(ŷ1) = ϕ̂(ŷ2), δ(ŷ1, n) = δ(ŷ2, n) and that ϕ̂(T−1(ŷ1)) 6= ϕ̂(T−1(ŷ2)).

Note that by construction of the δ distributions, knowing δ(ŷ, n) for n ≥ 0 also determines

δ(Tm(ŷ), n) for any m ≥ 0; as δ(ŷ, n) encodes information about the pre-images of ŷ under

T . For the above arrays ŷ1 and ŷ2, we then also have that δ(Tm(ŷ1), n) = δ(Tm(ŷ2), n)

for any m ≥ 0.

We now consider, for each n ∈ N, the equivalence class of arrays, with ŷ1 and ŷ2 deemed

equivalent if they satisfy δ(Tm(ŷ1), n) = δ(Tm(ŷ2), n) for all m ∈ N. Such equivalence

classes of arrays are non-empty, closed (as intersections of cylinder sets) so compact, and

decreasingly nested in n (by property 2. in lemma 4.5. of the δ distributions). Now as

there are only p choices for the value of ϕ̂
(
T−1(ŷ)

)
, we may choose a subsequence of these

equivalence classes (indexing them by n ∈ N), and apply Cantor’s intersection theorem

to extract two arrays ŷ1 6= ŷ2 with the property that ϕ̂(ŷ) = ϕ̂(ŷ1) = ϕ̂(ŷ2), and for each

n > 0, m ≥ 0 we have that δ(Tm(ŷ1), n) = δ(Tm(ŷ2), n) (i.e. ŷ is symmetric). We have

shown that every point ŷ ∈ S is symmetric; but S has strictly positive measure and so,

by lemma 4.7., almost every ŷ ∈ Ŷ is symmetric, contradicting our assumption.

We have now collected all of the results needed to prove Rudolph’s theorem, which will

complete our work. Note that the following theorem implies theorem 1.7. holds.

Theorem 5.7. For any µ̂ ∈ M̂0 such that µ̂ 6= λ̂ (i.e. µ does not arise from the Lebesgue

measure, λ, on T) we have that hµ̂(T ) = hµ̂(S) = 0.

Proof. Firstly we use the Abramov-Rokhlin Formula, property 6. of proposition 5.2., along

with lemma 5.3 to write

hµ̂(T,P) = hµ̂(T ) = hHµ̂ (T ) + hµ̂(T | H) = hHµ̂ (T ) + hµ̂(T, P | H).

As our measure does not correspond to the Lebesgue measure on the circle, µ̂ almost every

ŷ ∈ Ŷ is not symmetric. Therefore, we may then apply lemma 5.6 and the future formula,

property 4. of proposition 5.2., to see that

hµ̂(T,P | H) = Hµ̂

(
P

∣∣∣∣∣
∞∨
i=1

T−i(P ) ∨H

)
= Hµ̂

(
T (P)

∣∣∣∣∣
∞∨
i=0

T−i(P) ∨H

)
= 0

Note that the second equality used the invariance property of conditional entropy,property

3. of proposition 5.2., combined with the fact that T is invertible and H is T invariant.

Thus we have that hµ̂(T,P) = hHµ̂ (T ).

By applying lemma 5.4. and corollary 5.5.1. we conclude that
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0 = hHµ̂ (S) =
log(q)

log(p)
hHµ̂ (T ) =

log(q)

log(p)
hµ̂(T,P) = hµ̂(S,P)

(where as in the proof of lemma 5.4. for the final equality we use that hµ̂(T,P | N ) =

hµ̂(T,P), hµ̂(S,P | N ) = hµ̂(S,P)).

From this we see that hµ̂(T,P) = hµ̂(S,P) = 0, which by lemma 5.3 allows us to conclude

that hµ̂(T ) = hµ̂(S) = 0.

Thus we have established the theorem of Rudolph, concluding that under the assumption

of positive entropy of one of our transformations, T or S, our measure must be Lebesgue.

To briefly recapitulate our argument; we first encapsulated the dynamics of the circle

under the maps T and S, in a space of two dimensional one sided symbolic dynamics.

Via the technique of inverse limits of dynamical systems, we constructed an invertible

dynamical system Ŷ that lifted uniquely from Y and inherited properties of measures,

erogdicity and entropy directly from the circle. We then focused on Ŷ, constructing the

sequence of δ measures, via the disintegration theorem, that were crucial in distinguishing

the Lebesgue measure through the notion of symmetric points. After establishing lemmas

about symmetric points, we showed that our measure must be Lebesgue in the case that the

set of symmetric points is of full measure. Finally, we showed that under the assumption

of positive entropy, almost every point is symmetric and so our original measure was

Lebesgue.

6 Extension and Developments of Rudolph’s Theorem

To conclude the report, in this final section we discuss some improvements and a relaxation

of Rudolph’s theorem, before mentioning its influence on an open problem in number

theory.

The first immediate extensions of Rudolph’s theorem were to powers of products of co-

prime numbers in his original paper (corollary 4.11 in [R]), though this was generalised

shortly after by Johnson, in [J], to the following stronger result:

Theorem 6.1. (Theorem B in [J]) Let Σ be a non-lacunary semi-group of the integers and

let µ be an invariant Borel probability measure on T that is ergodic for the transformations

induced by multiplication of elements of Σ. Then either µ is the Lebesgue measure, or each

element of Σ gives zero entropy.

This extension of Rudolph’s theorem is in analogy with the more general version of theorem

1.2. from section 1, which was proven in [F].
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Two more recent papers; [HS1] from 2012 and [HS2] from 2015, of Hochman and Shmerkin

establish two results of different flavours, both of which are shown directly to give short

proofs of Rudolph’s theorem. The first of these results (theorem 1.3. in [HS1]) is about the

Hausdorff dimension of measures on T invariant under the transformations T and S, and

the second of which (theorem 10.4. in [HS2]) is about measures on T that are T invariant

and supported on points that are normal base q. The latter of these results generalises

theorem 1. from the earlier paper of Host, [Hos].

A weakened version of Rudolph’s theorem has also been established, utilising different

methods to those in the original paper and this report. Under the stronger assumption

that we have ergodicity with respect to a single transformation, the blog post [Ma] by

Matheus presents a proof of the Rudolph’s theorem using techniques from Fourier analysis;

in a similar manner to the original result of Lyons (in [Ly]), which Rudolph’s theorem

strengthens. For the interested reader, a discussion and extension, to higher dimensional

toral endomorphisms, of the results in the above mentioned blog post may be found in

Zickert’s masters thesis, [Z].

Finally, we briefly discuss the implications of Rudolph’s theorem, as mentioned in [Ma]. In

recent years Rudolph’s theorem has served, in a qualitative sense, to motivate approaches

towards an open problem in number theory, namely that of the Littlewood conjecture; an

accessible introduction and survey of which may be found in [V]. This open conjecture

concerns the simultaneous approximation of two real numbers by rationals, and is stated

as follows:

Conjecture 6.2. (Littlewood 30’) For every x, y ∈ R,

lim inf
n→∞

n{nx}{ny} = 0

(where {x} denotes the fractional part of x, i.e. the distance to the nearest integer).

Though this conjecture is still open, the strongest result towards it is obtained in [EKL].

Precisely, the result obtained is the following:

Theorem 6.3. (Theorem 1.5 in [EKL]) Let

Ξ :=

{
(x, y) ∈ R2

∣∣∣∣ lim inf
n→∞

n{nx}{ny} > 0

}
Then Ξ is of Hausdorff dimension zero.

Without us explicitly defining the notion of Hausdorf dimension, we note that this theorem

establishes that the set of exceptions to the Littlewood conjecture, Ξ, is relatively small;

in particular of zero Lebesgue measure. This theorem is established as a corollary to the
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central results of [EKL]; which are qualitatively similar to Rudolph’s theorem, in that they

reduce another conjecture (1.1 in [EKL]) to looking at measures of zero entropy.

In conclusion, while conjectures 1.6 and 6.2 are still both open; the entropy theoretic

approaches that Rudolph’s theorem has afforded and motivated are certainly significant.
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