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Abstract

Abstract

This thesis concerns the regularity properties of constant mean curva-
ture hypersurfaces. These hypersurfaces arise naturally as boundaries
to isoperimetric regions (regions with least boundary area for a fixed
enclosed volume) and more generally as critical points of an area-type
functional. Historically, constant (and other prescribed) mean curvature
hypersurfaces have served as effective tools in developing our understand-
ing of the interaction between the curvature and topology of Riemannian
manifolds.

Constant mean curvature hypersurfaces may be produced by various
minimisation and min-max procedures. Sharp regularity theory guar-
antees that, in both cases, the hypersurface produced will be smoothly
immersed away from a closed singular set of codimension seven. In par-
ticular, when the ambient manifold is of dimension eight, one produces a
constant mean curvature hypersurface which is smoothly immersed away
from finitely many isolated singular points.

The presence of a singular set in high dimensional hypersurfaces of
constant mean curvature means that, in general, they may fail to be an
effective tool for geometric and topological application. One method to
deal with the presence of a singular set is to show that generically one
can remove it, resulting in an entirely smooth constant mean curvature
hypersurface suitable for effective application. This generic regularity
approach requires a finer understanding of the singularities that arise as
well as the development of perturbation procedures to remove them.

This thesis utilises and develops techniques in the calculus of varia-
tions, elliptic partial differential equations and geometric measure theory
in order to produce the first generic regularity results for the general class
of constant mean curvature hypersurfaces when the ambient manifold is
of dimension eight. The first part of this thesis establishes relevant back-
ground while the second part obtains generic regularity results under the
assumption of positive Ricci curvature.
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Impact Statement

Impact Statement

Many natural phenomena are well approximated by solutions to geo-
metric variational problems. In particular, constant mean curvature hy-
persurfaces provide mathematical realisations of soap films and bubbles.
Historically, smooth constant (and other prescribed) mean curvature hy-
persurfaces have also served as effective tools for answering fundamental
questions arising in both mathematical physics as well as the interaction
between geometry and topology. Consequently, there is a large ongoing
program, with contributions from researchers worldwide, dedicated to
studying the regularity properties of constant mean curvature and more
general variational hypersurfaces.

The scope of this thesis is to provide the very first generic regularity
results for the general class of constant mean curvature hypersurfaces.
These so called generic regularity results have in recent years seen sig-
nificant development for the class of minimal hypersurfaces, a special
instance of constant mean curvature hypersurfaces. In general, generic
regularity results show that one may perturb away potential singular be-
haviour in order produce an entirely smooth variational hypersurface;
the present work addresses the case of isolated singular points arising in
constant mean curvature hypersurfaces. The resulting smooth constant
mean curvature hypersurfaces produced by our results are thus suitable
for effective application to problems arising in both mathematical physics
as well as the interaction between geometry and topology.

One method used in this thesis to refine our understanding of the reg-
ularity properties of constant mean curvature hypersurfaces is to directly
exploit their deep connection to phase transition phenomena, specifically
arising from the Allen–Cahn energy. Over the past decade, there has
been significant progress in our collective understanding of this connec-
tion. However, its profound potential in establishing geometrical results
is only recently beginning to be realised.
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1. Background

Chapter 1

Background

Solutions to geometric variational problems, for example those arising
via minimisation of an energy functional, provide mathematical realisa-
tions of various natural phenomena; as a pair of leading examples, one
may consider soap films and bubbles. These problems have a rich history,
with various formulations of geometric variational problems documented
at least as far back as the ancient Greeks, who recorded that the resolu-
tion of the isoperimetric problem by Dido at Carthage took place around
800BC. The isoperimetric problem, which seeks the largest enclosed area
by a boundary curve of fixed length, and generalisations thereof, remains
an active area of mathematical research. Through deepening our under-
standing of these problems, significant developments in the interaction
between geometry and topology have followed.

The area functional serves as perhaps the simplest geometric func-
tional, and as such provides a good first approximation to various natural
phenomena. One is thus interested in studying the behaviour of critical
points of the area functional (and other area-type functionals) in a math-
ematical framework. Such a framework, provided by the fields of calculus
of variations, geometric measure theory and partial differential equations,
has seen a marked development in the past century. A major early suc-
cess for these fields was the resolution of the Plateau problem, which
seeks a surface of least area spanning a given curve, in [Dou31, Rad30]
resolving a question of Lagrange that had remained open since 1760.

Historically, smooth hypersurfaces arising as critical points of area-
type functionals have served as effective tools in their application to solve
problems arising in low-dimensional geometry and topology. We highlight
here the resolution of the positive mass conjecture in general relativity in
[SY79a, SY79b], the proof of the finite extinction time of the Ricci flow
in [Per08, CM05], the resolution of the Willmore conjecture in [MN14],

17 of 151



1.1. Results and organisation 1. Background

and finally recent work concerning the topology of manifolds of positive
scalar curvature in [CL24]. When hypersurfaces arising as critical points
of area-type functions fail to be smooth however, they also in general fail
to be effective tools in their application.

This thesis concerns the study of high-dimensional solutions to some
geometric variational problems, in particular focusing on the singular
behaviour of the hypersurfaces that arise as critical points to area-type
functionals. In the lowest dimension in which singular behaviour occurs
for these objects we establish, in various settings, that the presence of
singularities in these hypersurfaces is not generic in a topological sense;
more precisely, generically one can find a smooth hypersurface arising as
a critical point.

In this chapter, we provide background on subjects relevant to the
main body of the thesis. We begin with a description of the main result
of the thesis, along with a brief summary of the proof strategy. We
then discuss both the existence and corresponding regularity theory for
the area functional, introducing various general techniques and notions
used throughout the thesis. Finally, we conclude with a brief survey
of historical developments in the field, accompanied by a summary of
previous work on generic regularity.

1.1 Results and organisation

In this thesis we establish the first generic regularity results for the gen-
eral class of constant mean curvature hypersurfaces. The new contribu-
tions of the thesis are contained in Chapter 2; the results of which were
developed jointly with Costante Bellettini and appear in [BM23].

1.1.1 Main theorem and proof strategy

The main theorem obtained in the thesis is the following:

Theorem 1.1. Given any λ ∈ R, in a generic compact 8-dimensional
Riemannian manifold with positive Ricci curvature, there exists a closed
embedded smooth hypersurface with constant mean curvature λ.

The term generic here is understood in the topological sense and refers
to an open and dense subset of the metrics of positive Ricci curvature.
A precise statement of Theorem 1.1 (and statements for other ancillary
results of the thesis) may be found in Section 2.1 of Chapter 2. We now
briefly discuss the proof of Theorem 1.1, and for further detail direct
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1.1. Results and organisation 1. Background

the reader to the expanded discussion of the proof strategy contained in
Subsection 2.1.3 of Chapter 2.

In a compact Riemannian manifold, the work of [BW20a] established,
for each λ ∈ R, the existence of a hypersurface of constant mean curva-
ture λ which is smoothly immersed away from a closed set of codimension
7. In particular, in ambient dimension 8, the constant mean curvature hy-
persurfaces produced by the Allen–Cahn min-max procedure of [BW20a]
are smoothly immersed away from finitely many isolated points. This
existence theory for constant mean curvature hypersurfaces relies both
on the sharp regularity theory of [BW20b, BW20c] as well as a min-max
procedure for a modified Allen–Cahn energy. A detailed discussion of this
construction and the relevant preliminaries are contained in Subsection
2.1.2 of Chapter 2.

By directly exploiting this min-max construction, in [BW24] it was
shown that under an assumption of positive Ricci curvature for the am-
bient manifold, the Allen–Cahn min-max procedure of [BW20a] above
produces constant mean curvature hypersurfaces which are smoothly em-
bedded (as opposed to smoothly immersed) away from a closed set of
codimension 7; in particular, in ambient dimension 8 these hypersurfaces
are smoothly embedded away from finitely many isolated points.

As the starting point for the proof of Theorem 1.1 we therefore know
that for each λ ∈ R, in a compact 8-dimensional Riemannian mani-
fold with positive Ricci curvature, the Allen–Cahn min-max procedure
of [BW20a] produces a hypersurface of constant mean curvature λ which
is smoothly embedded away from finitely many isolated points. We work
directly with such a hypersurface in order to establish Theorem 1.1.

Starting with the hypersurface of constant mean curvature λ pro-
duced by the Allen–Cahn min-max procedure of [BW20a] as a candi-
date, Theorem 1.1 ultimately follows by application of a local “cut-and-
paste” surgery procedure that removes the finitely many isolated points
at which the hypersurface fails to be embedded; yielding a closed em-
bedded smooth constant mean curvature hypersurface after conformal
metric perturbation. The surgery procedure we develop exploits local
foliations by constant mean curvature hypersurfaces around such points
as established in [HS85] and [Les23]; for further details on this proce-
dure we refer the reader to Step 3 of Subsection 2.1.3 and Proposition
2.1 in Chapter 2. As a further application of this surgery procedure, we
also partly answer an open question of Lawson; see Subsection 2.2.2 in
Chapter 2.
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1.1. Results and organisation 1. Background

However, in order to apply the aforementioned surgery procedure to
each of the finitely many isolated points at which the constant mean cur-
vature hypersurface fails to be embedded, we in fact need to know that
the hypersurface is a local minimiser of the natural area-type functional
around these points. Indeed, it is precisely this local minimisation con-
dition that guarantees the existence of the local foliations of [HS85] and
[Les23] with which our “cut-and-paste” surgery procedure is constructed.

We therefore turn our attention to showing that the candidate con-
stant mean curvature hypersurface locally minimises the natural area-
type functional around each of the finitely many isolated points at which
it fails to be embedded. This is achieved by first relating this local
minimisation to Allen–Cahn energy properties of specific functions con-
structed from the underlying hypersurface.

By pasting in the normal direction to our hypersurface (suitably mod-
ified) solutions to the one-dimensional Allen–Cahn equation for each scale
ε > 0, we construct approximating functions with Allen–Cahn energy
approaching the value of the natural area-type functional evaluated on
our hypersurface as ε → 0; see Subsection 2.3.3 of Chapter 2 for this
construction. We then show that minimisation of the natural area-type
functional in a small ball follows if the Allen–Cahn energy of these ap-
proximating function remains close, as ε → 0, to that of the minimiser of
the Allen–Cahn energy in this ball (with boundary conditions imposed
by these approximating functions); this is discussed in further detail in
Step 1 of Subsection 2.1.3 and established in Section 2.4 of Chapter 2.

Remark 1.1. The manner in which we deduce local area minimisation
(in the case that λ = 0) may be compared to the way in which op-
timal regularity is deduced for minimal hypersurfaces produced by the
Almgren–Pitts min-max procedure. In [Pit81, Chapter 3] it is shown that
the Almgren–Pitts min-max procedure produces varifolds satisfying an al-
most minimising property, allowing for stability in annular regions to
be deduced (from which their regularity ultimately follows). The way in
which we deduce local area minimisation is analogous to this notion in
the sense that we require our approximating functions to remain close in
Allen–Cahn energy (as opposed to close in area to local area minimis-
ers in the definition of almost minimising) to that of Allen–Cahn energy
minimisers in a ball.

However, our approach differs in that for deducing local area minimi-
sation we need not ask for the existence of a path of functions between
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1.1. Results and organisation 1. Background

our approximating functions and the local minimiser with controlled in-
crease in Allen–Cahn energy (as opposed to the isotopy with controlled
area required in the definition of almost minimising). Paths between our
approximating functions and local Allen–Cahn energy minimisers are in
fact constructed as part of the proof of Theorem 1.1, but upper Allen–
Cahn energy bounds along the paths produced are independent of the dif-
ference in energies between the functions and depend only on geometric
properties of our underlying hypersurface; we refer the reader to Step 2 of
Subsection 2.1.3 and Subsection 2.5.5 of Chapter 2 for further discussion
on this point.

Finally, we note that the conclusion of area minimisation (as op-
posed to the weaker notion of almost minimisation) for minimal hyper-
surfaces arising from the Allen–Cahn min-max procedure in compact 8-
dimensional Riemannian manifolds with positive Ricci curvature makes
explicit use of the curvature assumption in its proof. It is, as yet, un-
clear whether the local area minimisation conclusion holds without this
curvature assumption.

Having related local minimisation of the natural area-type functional
to the Allen–Cahn energy behaviour of specific functions approximating
the underlying geometry, we now establish this local minimisation for the
candidate constant mean curvature hypersurfaces by directly exploiting
their construction via the Allen–Cahn min-max. Specifically, to derive
a contradiction under the assumption that the local minimisation failed
(i.e. assuming that the Allen–Cahn energy of our approximating functions
differed by a fixed amount to that of the local Allen–Cahn energy min-
imisers for all ε > 0 sufficiently small), we exhibit a path of functions ad-
missible in the min-max construction but with Allen–Cahn energy along
this path bounded above by a value strictly less than the min-max value
(which we show to be the value of the natural area-type functional evalu-
ated on our hypersurface). This contradiction implies that constant mean
curvature hypersurfaces produced by the Allen–Cahn min-max procedure
in 8-dimensional compact manifolds with positive Ricci curvature in fact
locally minimise their natural area-type functional. For a heuristic de-
scription of this path and of the reliance of the positive Ricci curvature
assumption for controlling the Allen–Cahn energy, we refer the reader to
a detailed discussion in Step 3 of Subsection 2.1.3 of Chapter 2; this path
is explicitly constructed in Section 2.5 of Chapter 2.

To summarise the above, we will deduce Theorem 1.1 in three steps.
First, we show that local minimisation of the natural area-type func-
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1.2. A brief history of existence 1. Background

tional is related to the ε → 0 behaviour of the Allen–Cahn energy for
approximating functions constructed from the candidate constant mean
curvature hypersurfaces. Second, we exploit the relation above and the
Allen–Cahn min-max construction of these hypersurfaces in order to de-
duce local minimisation by exhibiting an admissible min-max path; this
yields a contradiction under the assumption that local minimisation fails.
Third, we employ a local “cut-and-paste” surgery procedure along with
a conformal change of metric to perturb away the finitely isolated points
at which the constant mean curvature hypersurface fails to be embed-
ded; this final step concludes the proof of Theorem 1.1. A more detailed
discussion of these three steps, alongside the necessary definitions and
preliminaries, is the focus of Section 2.1 of Chapter 2.

Finally, for the reader interested in the results obtained in Chapter
2 solely for minimal (i.e. the case λ = 0) hypersurfaces we also provide,
in Appendix 2.A, simplifications of various arguments which serve as a
more direct route to establishing our results in this case. In particular,
the simpler alternative upper energy bound calculations included in this
appendix may be used directly in place of those computed in Subsections
2.5.3 and 2.5.4 in order to establish Theorem 1.1 in the minimal case.

1.2 A brief history of existence

For a given geometric variational problem, one is concerned with both the
existence and corresponding regularity of its solutions. A major issue for
existence theory is that often the desired solution space, for example the
class of smooth hypersurfaces, lacks any natural compactness property.
To surmount this issue, one typically enlarges the class of admissible
solutions to a space with good compactness properties in order to produce
a suitable candidate, a so-called weak solution; after which one may then
turn their attention to its regularity.

This is in strong analogy with with the study of partial differential
equations. For example, one can exploit the Rellich–Kondrachov com-
pactness theorem in order to guarantee the existence of minimisers of the
Dirichlet energy, subject to a boundary condition, in the Sobolev space
W 1,2 (enlarging the class of smooth functions). One then proceeds to
apply the Weyl lemma to the variational formulation of the problem in
order to deduce regularity for this weak solution, i.e. establishing that
this function is in fact smooth in the interior.

We begin by considering the model problem of finding closed geodesics
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1.2. A brief history of existence 1. Background

in surfaces, emphasising the need for an alternative approach to direct
minimisation in order to find critical points of the area functional. To
address more general problems, we then introduce various generalisations
of the notion of a submanifold, providing us with suitable solution spaces
possessing favourable compactness properties. Finally, we discuss the
deep connection between critical points of the area functional and phase
transition phenomena.

1.2.1 A case study in closed geodesics

Recall that a closed geodesic in a Riemannian manifold is a smooth,
closed curve of locally shortest length between any two points contained
on it. Equivalently, closed geodesics, γ : S1 → Σ, in a Riemmanian
surface (Σ2, g) are characterised as critical points to the length functional

L(γ) =
∫

S1

√
gγ(t)(γ̇(t), γ̇(t)) dt.

Here, a critical point of the length functional is a closed curve, γ, as
above such that we have

d

ds

∣∣∣∣∣
s=0

L(γs) = 0,

for all smooth variations, γs, with γ0 = γ (precisely, γs(t) = H(t, s) for
some smooth map H : S1 × (−ε, ε) → Σ with ε > 0); for a proof of this
equivalence see [Lee18, Corollary 6.7].

Figure 1.1: A torus showing two closed curves in the same
homotopy class. The curve in green indicates a length min-
imising closed geodesic.

A natural question one may ask is whether there exist closed geodesics
in any compact Riemannian surface. To answer this, one may first try to
minimise the length functional among all curves in a given homotopy class
and, upon taking a sub-sequence converging to the infimum of the lengths
of these curves, find a length minimising geodesic in this homotopy class.
This method was successfully carried out in [Had98] and in particular,

23 of 151



1.2. A brief history of existence 1. Background

when the homotopy class is non-trivial, produces a non-trivial geodesic
(i.e. a curve of non-zero length); this procedure is depicted in Figure 1.1.

The issue one encounters with this approach is that if the homotopy
class is trivial, namely when our surface is a topological sphere, one will
simply minimise the length to zero and produce a point; see Figure 1.2.

Figure 1.2: A sphere showing a sweepout by closed curves.
Trying to minimise length in the homotopy class of the sphere
would result in a trivial geodesic (a point).

As a concrete example, in the round sphere all closed geodesics are
given by great circles (intersections of the sphere, centered at the ori-
gin, with planes in R3), which are all unstable critical points of the
length (pushing the curves in their normal direction strictly decreases
their length). In order to locate these unstable non-trivial geodesics we
thus require a general procedure to locate critical points that may no
longer be global minimisers.

In [Bir17] the existence of a closed geodesic on any topological sphere
was established by introducing a technique now well known as a min-
max. Loosely speaking, in this construction one considers sweep-outs
(by which we mean a set of pairwise disjoint closed curves, Γ ⊂ S2,
whose union is S2) of the ambient Riemannian surface, (S2, g), by closed
curves and keeps track of the lengths of the curves along the sweep-out;
see Figure 1.3.

S1 × [0, 1] S2

σ

Figure 1.3: A sweep-out of S2 from a continuous map σ.
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1.2. A brief history of existence 1. Background

More precisely, one considers the set, S, of continuous maps

σ : S1 × [0, 1] → S2,

that map S1 × {0} and S1 × {1} to points, that for each t ∈ [0, 1] the
map σ(·, t) ∈ W 1,2, and are continuous in the second variable as a map
from [0, 1] to W 1,2. For a given σ̃ ∈ S we let Sσ denote the set of all
maps σ ∈ S that are homotopic to σ through maps in S. Given σ̃ ∈ S
one then considers the following min-max quantity or width

Wσ̃ = inf
σ∈Sσ̃

max
t∈[0,1]

E(σ(·, t));

here in the above, for each closed curve γ : S1 → S2, we define

E(γ) =
∫

S1
gγ(t)(γ̇(t), γ̇(t)) dt,

so that L(γ)2 ≤ 2πE(γ) with equality if and only if γ is of constant
speed.

In fact, Wσ̃ = 0 if and only if σ̃ is homotopic to a constant map,
as we now show. Whenever σ̃ ∈ S is homotopic to a constant map we
immediately note that Wσ̃ = 0. For the reverse direction we note that if
Wσ̃ = 0 we can find some minimising sequence, σk ∈ Sσ̃, such that

lim
k→∞

max
t∈[0,1]

E(σk(·, t)) = 0.

This implies that there is a δ > 0 such that for sufficiently large k and
each t ∈ [0, 1] the images σk(S1, t) are contained within a convex geodesic
ball of radius δ centred at points pk(t) (where these centres may be chosen
to vary continuously in t). We may then produce a homotopy from
σk(·, t) to the constant map pk(t) by considering the shortest geodesics
from points on σk(·, t) to pk(t). We then have that σk is homotopic to
pk, with the latter null homotopic as pk([0, 1]) is contractible to a point.

By exploiting the fact that the widths are positive on non-trivial ho-
motopy classes, Birkhoff was able to show that each non-trivial homotopy
class of maps in S realises a non-trivial closed geodesic in S2. This re-
quires the additional development of a curve shortening process (which
we omit for brevity) with full details of the entire min-max construction
found in [CM11, Chapter 5]. This therefore, coupled with the minimi-
sation procedure above, establishes the existence of a closed geodesic in
any compact Riemannian surface.
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1.2. A brief history of existence 1. Background

The above min-max technique is a specific instance of a more general
principle for a wide range of functionals satisfying an appropriate com-
pactness condition, allowing one to establish the existence of non-trivial
critical points; generally these will be unstable or saddle type critical
points rather than minima. The idea is similar to the above whereby
one considers continuous paths, now in the domain of the functional,
between two critical points of low energy (the trivial length minimisers
for the length above). If the Palais-Smale condition (which guarantees
the extraction of weakly converging sub-sequences) is satisfied, one can
consider the maximum value of the functional along each of these paths,
extract a sub-sequence which converges in an appropriate weak topology
to the infimum of these values, and produce a non-trivial critical point.
The general result here is aptly named a “mountain pass” theorem; as
depicted in Figure 1.4; for details see [Eva10, Section 8.5].

Figure 1.4: A depiction of the mountain pass theorem.
Along the black curve are the maximum values of the func-
tional along the paths between the critical points of low energy
(the endpoints of the blue and green curves). The green curve
depicts an “optimal” path with maximum value of the func-
tional along the path realising the min-max value.

We conclude this subsection by emphasising the importance of utilis-
ing mountain pass min-max arguments in order to produce critical points
of the area functional is essential in general. Ambient Riemannian man-
ifolds with positive Ricci curvature (which we will focus on in Chapter
2) contain no area-minimising (and more generally contain no stable)
minimal hypersurfaces. Similarly, for producing hypersurfaces with con-
stant mean curvature of a specific value (a problem we will consider in
Chapter 2), a minimisation procedure will not suffice (regardless of cur-
vature assumption) as such a procedure provides no control on the mean
curvature of the resulting hypersurface (e.g. consider the isoperimetric
problem on the flat torus). Thus, in order to produce critical points of
the area in either of the above settings (i.e. under an assumption posi-
tive Ricci curvature or specifying a constant for the mean curvature) a
method for producing unstable critical points of the area is essential.
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1.2.2 Weak notions of a submanifold

A prototypical existence problem related to the area functional is that of
the Plateau problem. Namely, given a boundary in Rn, find a surface of
least area with that boundary. In order to answer such a question, one
must first concern themselves as to which space of surfaces to consider.

Perhaps the simplest example is provided by considering the unit cir-
cle inside R3, where an obvious minimising candidate is the flat unit disk.
One may then suppose that a reasonable space of surfaces to consider are
those smooth surfaces with common boundary given by the unit circle.
Within this space of surfaces one can then take a sequence whose area
approaches the infimum, hoping to extract the smooth disk in the limit;
such a procedure fails dramatically. Consider the following figures taken
from [Mor16]:

Figure 1.5: A minimising sequence of smooth surfaces.

The “tentacles” depicted in Figure 1.5 can in fact be arranged so
that the sequence includes the entirety of R3 in its closure. Here we have
exhibited a sequence of smooth surfaces with area approaching that of
the minimiser (the area of disk) but not converging to a smooth surface.
Thus, the lack of compactness exemplified by this “filigree” issue above
must be accounted for in any reasonable formulation of the Plateau prob-
lem, and more generally for the study of general critical points of the area
functional.

Another issue to consider, again within the class of smooth surfaces,
is that of so-called “mass drop”. Consider the simple example of two
vertically stacked straight unit line segments, separated by a distance of
width ε; for each positive ε the total length along the sequence is 2. Upon
sending ε → 0 however, the resulting limit will be a single line; which as
a set may be considered now to have length 1.

In order to account for this loss of length in the limit we need to
introduce a notion of integer multiplicity; namely, we will need to allow
our space of surfaces (still to be determined) to carry a (potentially non-
unitary) integer multiplicity function. In the example of the two line
segments above this would correspond to equipping the limiting unit
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line segment with multiplicity 2 (i.e. counting its length twice), thus
accounting for all of the length along the sequence. The introduction of
the notion of integer multiplicity will later serve to ensure continuity of
the area functional when taking limits.

To summarise the above two examples, any space of surfaces con-
sidered for formulating problems regarding critical points of the area
functional must accommodate singular behaviour (regions where these
surfaces fail to be smooth manifolds), higher integer multiplicity (to en-
sure continuity of the area along sequences of these surfaces), and posses
a notion of compactness (in order to extract limits). We now proceed to
examine what it means for a smooth submanifold to be a critical point of
the area functional, from which we will be able to appropriately weaken
our notion of a surface.

Definition 1.1. We say that a smooth k-dimensional submanifold, Σ,
(possibly with boundary) of a Riemannian manifold, (N, g), is stationary
or a critical point for the area functional if

d

dt

∣∣∣∣∣
t=0

Hk(Σt) = 0,

for all smooth variations, Σt, of Σ with compact support and fixed bound-
ary.

Here, Hk denotes the k-dimensional Hausdorff measure (which agrees
with the k-dimensional area/Lebesgue measure on smooth submanifolds)
and by a smooth variation we mean precisely that Σt = F (Σ, t) for some
smooth map F : Σ × (−ε, ε) → N with F (x, 0) = x for all x ∈ Σ, F
equal to the identity outside of a compact subset of Σ, and F (x, t) = x

for all x ∈ ∂Σ and t ∈ (−ε, ε).

Σ
Σt

Figure 1.6: A smooth variation of a submanifold.

In fact, one can compute that

d

dt

∣∣∣∣∣
t=0

Hk(Σt) = −
∫

Σ
g(Ft, H) dHk =

∫
Σ

divΣFt dHk,

where Ft is the vector field given by the derivative of F with respect
to the variable t, H denotes the mean curvature vector of Σ, and divΣ
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denotes the divergence operator acting on vector fields at points of Σ (for
full details of this computation one may consult [CM11, Section 1.3]).

From this we deduce that Σ being stationary has both a geometric
and variational formulation. Geometrically, through the vanishing of the
mean curvature, for which we say that Σ is a minimal submanifold; no-
tice in particular that 1-dimensional minimal submanifolds are in fact
geodesics as in Subsection 1.2.1. In its variational formulation, the sta-
tionarity condition is equivalent to the identity

∫
Σ

divΣX dHk = 0 (1.1)

for all compactly supported smooth vector fields, X, that vanish on ∂Σ.

We note that while the vanishing of the mean curvature vector makes
sense pointwise whenever Σ is a C2 submanifold, the variational formu-
lation above makes sense for much weaker regularity assumptions on the
submanifold Σ. In particular, the identity (1.1) makes sense when Σ is
merely k-rectifiable.

Definition 1.2. We say that Σ ⊂ N is k-rectifiable if Σ has locally
finite Hk measure and a k-dimensional tangent plane at Hk almost every
point. Equivalently, Σ is contained, up to a set of zero Hk measure, in a
countable union of C1 submanifolds.

One can therefore, at least in principle, establish the existence of a k-
dimensional minimal submanifold by first producing a k-rectifiable set, Σ,
that is stationary for the area functional, and then deduce the regularity
of Σ directly from the above variational formulation, (1.1) (this second
step will be discussed further in Subsection 1.3).

This class of k-rectifiable sets is broad enough to capture the singular
behaviour alluded to above and, when these sets are equipped with a
locally integrable integer multiplicity function, form a space of surfaces
with favourable compactness properties.

Definition 1.3. An integer rectifiable k-varifold (as a contraction of the
term variational manifold), or simply k-varifold, is a pair V = (M, θ),
where M ⊂ N is k-rectifiable and θ : M → Z≥0 (the integer multiplicity
function) is locally Hk integrable.

By setting θ = 0 on N \ M we define the weight measure, ||V ||, of
a varifold, V = (M, θ), by setting ||V || = Hkxθ (so that ||V ||(A) =∫

A∩M θ dHk).
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More generally, by letting G(n, k) denote the set of k-dimensional
subspaces of Rn, one can define a general k-varifold on an open set U ⊂
Rn to be any Radon measure on U×G(n, k). Given an integer rectifiable
k-varifold, V = (M, θ), there is a corresponding general k-varifold, Ṽ ,
defined for A ⊂ U ×G(n, k) by

Ṽ (A) = ||V || (π(TM ∩ A)) ,

where π is the projection from U × G(n, k) onto the first factor and
TM = {(x, TxM) | M has a k-dimensional tangent plane at x} (such a
tangent plane is defined for Hk almost every x ∈ M by definition). This
notion can be readily extended to Riemannian manifolds and is of use in
establishing compactness of the class of integer rectifiable k-varifolds; we
refer the reader to [Sim84, Chapter 8] for further details on the theory
of general varifolds.

Definition 1.4. We define the first variation, δV , of a k-varifold, V =
(M, θ), on compactly supported smooth vector fields, X, by setting

δV (X) = d

dt

∣∣∣∣∣
t=0

||Vt||(Rn+1),

where here Vt = (ϕt)#V = (ϕt(M), θ ◦ ϕ−1
t ) is the varifold given by the

pushforward of V by the flow, ϕt, induced by the vector field X.

By a near identical calculation to the smooth case above (see for
example [Sim84, Section 39]) we then observe that for each compactly
supported smooth vector field, X, it holds that

δV (X) =
∫

M
θ divMX dHk =

∫
M

divMX d||V ||.

In analogy with the smooth case above, if for all compactly supported
smooth vector fields, X, we have that

δV (X) =
∫

M
divMX d||V || = −

∫
M
g(X,H) d||V ||,

then we say that V has generalised mean curvature H (which is locally
integrable with respect to the weight measure ||V ||).

Definition 1.5. We say that V is a stationary k-varifold if it has van-
ishing generalised mean curvature, thus satisfying (1.1) for the weighted
area functional (i.e. by integration with respect to ||V || = Hkxθ).

In particular, this generalises (1.1) for smooth k-dimensional subman-
ifolds, Σ, as above by considering the varifold V = (Σ, 1). Another im-
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portant class of codimension 1 varifolds (i.e. n-varifolds in Rn+1) we will
consider throughout this thesis are provided by those with generalised
mean curvature equal to a constant (scalar) multiple of the unit normal,
thus subsuming the class of stationary codimension 1 integral varifolds;
these hypersurfaces of constant mean curvature will be the main focus of
Chapter 2. Constant mean curvature hypersurfaces arise naturally as so-
lutions to the isoperimetric problem and more generally as critical points
of area-type functionals; see the introductions of Chapter 2 for details.
In particular, the constant for the mean curvature may be seen loosely
as a Lagrange multiplier for the area functional, finding critical points of
the area subject to an enclosed volume constraint.

As an aside, in [Men11] it has been shown that a stationary (and
more generally for those with locally bounded first variation) k-varifold
in fact has a C2 structure for its underlying k-rectifiable set (in that it
is contained, up to a set of zero Hk measure, in a countable union of C2

submanifolds).

A fundamental compactness result, established in [Alm65] and [All72]
(see also [Sim84, Theorem 42.7]), for the class of integer rectifiable vari-
folds is the following:

Theorem 1.2. (Allard–Almgren compactness theorem) Sequences of k-
varifolds with locally bounded weight measure and first variation converge
(in the sense of Radon measures) sub-sequentially to k-varifolds of locally
bounded weight measure and first variation.

The above result shows that the class of integer rectifiable varifolds
possesses favourable compactness properties and is suitable for studying
critical points of the area (and other area-type functionals). In fact, it
was also shown in [Alm65] that, by carrying out a mountain pass style
min-max (see Subsection 1.2.1 above) in the space of k-cycles, every
compact (n+ 1)-dimensional Riemannian manifold contains a stationary
k-varifold for each k ∈ {0, . . . , n}. For further detail on the theory of
varifolds we refer the reader to [Sim84].

We shall also make use of the alternative weak notions of submanifolds
provided by integral currents and Caccioppoli sets, each of which has an
underlying varifold associated to it. We now briefly summarise each of
these notions, providing references for the interested reader.

Integral currents, originally introduced in [FF60] to study generali-
sations of the Plateau problem, may be thought of as integer rectifiable
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varifolds that posses both a notion of continuously varying orientation
(associated to each of the almost everywhere defined tangent planes to
the underlying rectifiable set) along with a boundary (making them well
suited to formulations of the Plateau problem). We now define integer
rectifiable currents in Euclidean space, a notion which can be readily
extended to Riemannian manifolds.

Definition 1.6. An integer rectifiable k-current, T = (M, θ, ξ), on an
open set U ⊂ Rn, or simply k-current, is a continuous linear functional
on the space of compactly supported k-forms, Ωk

c (U), such that for each
ω ∈ Ωk

c (U) we have

T (ω) =
∫

M
〈ω(x), ξ(x)〉θ(x)dHk(x).

Here, M is a k-rectifiable subset of U , the multiplicity, θ : M → Z≥0,
is locally Hk integrable, and the orientation, ξ, is an Hk measurable
function such that at Hk almost every point of x ∈ M we have that
ξ(x) = τ1 ∧ · · · ∧ τk (where τ1, . . . , τk form an orthonormal basis for the
k-dimensional tangent plane at x ∈ M). We define the boundary, ∂T , of
a k-current T to be the (k − 1)-current formed by setting

∂T (ω) = T (dω)

(where d is the exterior derivative on forms) for each ω ∈ Ωk−1
c (U).

To each k-current T = (M, θ, ξ) we associate an underlying k-varifold
by considering V = (M, θ) (dropping the orientation). As an important
example, for an open set U ⊂ Rn and a k-dimensional oriented (by
some k-vector ξ) smooth submanifold M ⊂ U with locally finite Hk

measure, there is an associated k-current, which we hereafter denote by
[M ], defined on ω ∈ Ωk

c (U) by setting

[M ](ω) =
∫

M
〈ω(x), ξ(x)〉dHk(x).

We refer the reader to [Fed96], [Sim84] and [Mor16] for further detail on
the theory of integral currents.

A special class of codimension 1 integral currents are the Cacciop-
poli sets (also often referred to as sets of finite perimeter), originally
introduced in [Cac27]; see Subsection 2.1.1 of Chapter 2 for a precise
definition. Caccioppoli sets are well suited for studying problems involv-
ing interactions between sets and their boundary (c.f. the isoperimetric
problem introduced above). These are sets whose indicator function is of
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bounded variation (i.e. has a weak derivative given by a Radon measure),
and to whose boundary we associate a codimension 1 integer rectifiable
varifold with multiplicity function identically equal 1 (often referred to
as a multiplicity 1 varifold). We refer to [Mag12] for a comprehensive
introduction to the theory of Caccioppoli sets.

1.2.3 Phase transitions

We now discuss more recent developments in the study of phase tran-
sition phenomena that have established deep connections with the area
functional, notably providing an alternative approach to the existence
theory for critical points of the area functional in codimension 1. As
we will describe, this existence theory exploits a mountain-pass style
min-max argument in the Sobolev space W 1,2 (just as for geodesics in
Subsection 1.2.1) along with an approximation scheme, with parameter
ε, that recovers critical points of the area functional as ε → 0.

To this end, on a compact Riemannian manifold, (Nn+1, g), of dimen-
sion n + 1 ≥ 3, for each ε ∈ (0, 1], we denote the Allen–Cahn energy of
a function u ∈ W 1,2(N) by

Eε(u) = 1
2σ

∫
N

ε

2 |∇u|2 + W (u)
ε

.

Here, W is a double-well potential with unique global minima at ±1 and
σ =

∫ 1
−1

√
W (t)/2 dt. A typical choice for the potential is

W (t) = 1
4(1 − t2)2

(appropriately modified to ensure quadratic growth outside of [−2, 2] so
that this functional is well defined on W 1,2(N)).

−1 +1

Figure 1.7: The double-well potential, W (t) = 1
4(1 − t2)2.

As alluded to above, the ε → 0 behaviour of the Allen–Cahn energy
defined above turns out to be closely related to critical points of the area
functional. Loosely speaking, one can think of the Allen–Cahn energy as
a “mollification” of the area functional. Let us now make this heuristic
more precise.
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Suppose a sequence of functions, {uε}ε∈(0,1) ⊂ W 1,2(N), have uni-
formly bounded Allen–Cahn energies, i.e. such that supε∈(0,1) Eε(uε) ≤ C

for some constant, C > 0, independent of ε. In order for the Allen–Cahn
energies to remain uniformly bounded as ε → 0, we must have that
W (uε) → 0 as ε → 0 at almost every point. From the structure of W we
then have that uε → ±1 (up to a sub-sequence we will not relabel) as
ε → 0 at almost every point of N . The pointwise limit of the functions
uε as ε → 0 is thus a function, u0, with u0 = ±1 at almost every point
(in fact u0 will be of locally bounded variation, see [MM77]).

+1
−1

+1
= ∂{u0 = +1}∪with

Figure 1.8: A depiction of how the function u0 splits N .

In fact, if the uε are further assumed to be critical points of the
Allen–Cahn energy, then the boundary of the region {u0 = +1} will be a
minimal hypersurface (precisely, a stationary n-varifold); we now sketch
this in the case where the uε are local minimisers of the Allen–Cahn
energy.

We assume that the uε minimise the Allen–Cahn energy in some ball,
B, and compute that by the Cauchy–Schwartz inequality

Eε(uε, B) = 1
2σ

∫
B

ε

2 |∇uε|2 + W (uε)
ε

≥ 1
2σ

∫
B

√
2W (uε)|∇u|,

and by the co-area formula (see [Fed96] or [Sim84])

1
2σ

∫
B

√
2W (uε)|∇u| = 1

2σ

∫
R

√
2W (s)Hn({uε = s}) ds.

The quantity Eε(uε, B) is thus minimised on B when almost every level
set, {uε = s}, is area-minimising in B and the above inequality is in fact
an equality (i.e. when |∇uε| = 1

ε

√
2W (uε)). This brief sketch indicates

that level sets of local minimisers to the Allen–Cahn energy accumulate
on minimal surfaces as ε → 0 and suggests a deeper connection to the
area functional. We refer the interested reader to [Sav10, Section 2] and
[Cho19, Section 3] (and the references therein) for more complete details
of the above sketch.

The seminal work of [HT00], and its extension to Riemannian man-
ifolds in [Gua18, Appendix B], shows that for general critical points of
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the Allen–Cahn energy this analogy also holds; in that for sequences of
critical points with uniformly bounded energy one obtains a limiting min-
imal hypersurface. More precisely, the level sets of such critical points
accumulate, as ε → 0, around the support of the weight measure of a
stationary n-varifold.

Critical points of Eε arise as solutions, u, to the following semi-linear
elliptic equation:

∆u = W ′(u)
ε2 ;

(such solutions will be smooth by elliptic regularity, e.g. see [GT01]). The
unconstrained global minima, uniquely given by the constants ±1, are
the only functions with zero Allen–Cahn energy. One can show however,
see [Gua18, Lemma 4.2], that for a fixed ε the W 1,2(N) functions with
zero average have a uniformly positive lower bound on their Allen–Cahn
energy; serving as an ideal barrier for a mountain pass, see Figure 1.9.
One could then hope to show the existence of a non-constant critical
point of Eε through a mountain pass style min-max argument by using
paths between ±1.

This was carried out in [Gua18], upon showing that the Allen–Cahn
energy functional Eε satisfies the Palais–Smale compactness property, by
considering the min-max quantity

cε = inf
γ∈Γ

max
t∈[−1,1]

Eε(γ(t)),

where Γ denotes the set of continuous paths in W 1,2(N) between the
global minima ±1, i.e.

Γ = {γ ∈ C0([−1, 1];W 1,2(N)) | γ(−1) = −1, γ(+1) = +1}.

u = −1

u = +1

∫
N u = 0

Figure 1.9: The mountain pass for Eε.

One thus obtains a smooth critical point, uε, of the Allen–Cahn en-
ergy which attains the min-max value (i.e. such that Eε(uε) = cε). We
remark here for later reference that as a consequence of this construction,
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the Morse index of these solutions is bounded above by 1 (this is a gen-
eral principle of min-max constructions, where one expects the number
of parameters used in the construction to upper bound the Morse index
of the solutions obtained).

It is then shown, in [Gua18, Sections 6 and 7] by means of an isoperi-
metric type inequality and construction of an explicit sweepout from the
level sets of the distance function for the lower and upper bounds respec-
tively, that

0 < lim inf
ε→0

cε ≤ lim sup
ε→0

cε < ∞.

The theory of [HT00], in particular its extension to Riemannian manifolds
in [Gua18, Appendix B], then guarantees the existence of a non-trivial
stationary n-varifold by sending ε → 0 (along a sub-sequence).

Though the existence theory through the Allen–Cahn energy de-
scribed above only produces stationary codimension 1 varifolds, as op-
posed to those of any codimension as produced in [Alm65], this approach
(and those using alternative approximation schemes, e.g. recent work of
[PS20] for producing stationary codimension 2 varifolds and [GL24] for
Plateau solutions) is significantly less technically involved and, as such,
has led to incredibly fruitful results in recent years; we refer to Subsec-
tion 1.4.1 for further references in this direction. One work of particular
note for this thesis is the recently developed existence theory provided
by [BW20a] for constant (and more general prescribed) mean curvature
hypersurfaces. This latter approach exploits min-max techniques for a
modified Allen–Cahn energy functional and is the main focus of our at-
tention in Chapter 2; further details of the explicit construction of these
constant mean curvature hypersurfaces may be found in Subsection 2.1.2.

1.3 Optimal and generic regularity

In order to provide a suitable space of surfaces in which to establish the
existence of critical points to the area functional, in Subsection 1.2.2 we
enlarged the class of smooth submanifolds to that of the integer rectifiable
varifolds. This was done in analogy with enlarging the class of smooth
functions to the Sobolev space W 1,2 in order to find minimisers of the
Dirichlet energy. There, regularity (smoothness of the solutions) is then
deduced directly from the variational formulation of the problem via the
Weyl lemma.

Due to the nonlinear nature of the area functional, one does not gen-
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erally expect its critical points to lie in the class of smooth submanifolds.
Nevertheless, extensive developments in the regularity theory in the past
century have established an optimal regularity theory for these objects
in various settings. Analogously to the Dirichlet energy, this regularity
is often deduced by direct exploitation of the variational formulation of
stationarity; given by (1.1).

Note that, although we will primarily restrict our attention to the
case of stationary codimension 1 varifolds in this section, much of the
regularity theory discussed here also applies (with appropriate modifi-
cations that we will indicate in Chapter 2) to constant mean curvature
hypersurfaces.

We begin this section by discussing the regularity theory of stationary
varifolds, with a specific focus on the optimal regularity conclusions in
codimension 1. Subsequently, we explore various perturbation procedures
aimed at removing singularities that arise in such varifolds; leading us
to the main focus of the thesis, the notion of generic regularity. The
interested reader may consult the beautiful survey provided in [Wic14b]
for a more comprehensive survey of the results discussed here.

1.3.1 The singular set

When discussing the regularity of a stationary k-varifold, V = (M, θ),
we are concerned with the geometric structure and properties of the k-
rectifiable set M . Note that (e.g. see [Sim84, Theorem 38.3]) as

Hk((M \ Spt||V ||) ∪ (Spt||V || \M)) = 0,

this is equivalent to studying the support of the weight measure, ||V ||.
While we are interested in the general case of Riemannian manifolds,
regularity questions are of a local nature and, as such, extend to this
level of generality with only minor technical modifications to the results
in the Euclidean case (i.e. in ambient Rn+1), which we now restrict to.

Definition 1.7. The regular set, Reg(V ), of a stationary k-varifold V

is the set of points in Spt||V || near which Spt||V || is locally a smoothly
embedded k-dimensional submanifold; consequently, we define the singu-
lar set, Sing(V ), of V to be Spt||V || \ Reg(V ). In this way Reg(V ) is
relatively open, and Sing(V ) is relatively closed, inside of Spt||V ||.

Before discussing the general theory, we describe three instructive
examples of singular stationary varifolds for the reader to keep in mind
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throughout this subsection. These examples show that, even in some of
the simplest settings, singular behaviour in these objects is unavoidable.
They also serve to indicate the striking difference in behaviour we will
later observe between stationary varifolds of codimension 1 and those of
higher codimension.

Firstly, one reason to expect the presence of singularities is through
topological obstructions to smoothness. For example, if one formulates
the Plateau problem for a boundary with odd Euler characteristic, no
solution can be a smooth submanifold. Concretely, we embed CP 2 into
a sphere of some dimension m, and take it as the boundary to solve
the Plateau problem in Rm+1. There has to be a singularity in any
Plateau solution since CP 2 cannot bound a smooth compact oriented
manifold, and thus any solution must contain an interior singular point
(as a technical aside, since the sphere is convex there are no boundary
singularities by [All75]). However, we remark that for Plateau solutions
of codimension 1, there is no topological obstruction to the existence of
a smooth hypersurface (with boundary) arising as a solution.

Secondly, one can consider the multiplicity 1 varifold given by the
locally area-minimising 2-dimensional complex analytic variety

{(z, w) | z2 = w3} ⊂ C2 ∼= R4,

which has a branch point singularity at the origin (i.e. where the vari-
ety is not smooth locally but infinitesimally looks like a plane of high
multiplicity). As we shall see however, this phenomena of branch point
singularities can be ruled out, under appropriate assumptions, in codi-
mension 1.

Finally, we consider the simple example of a multiplicity 1 station-
ary varifold given by a pair of transversely intersecting hyperplanes in
Euclidean space. Such a pair of crossed planes is a smooth hypersurface
away from their intersection but, in ambient Rn+1, exhibits a singular
set of dimension n− 1; as we shall discuss shortly, this is in fact the best
general dimension bound on Sing(V ) one can expect for multiplicity 1
stationary varifolds.

1.3.2 Tangent cones

In order to probe the structure of the singular set of V , we first exploit
the variational formulation of stationarity given by (1.1) for the weighted
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area. Recall, (1.1) was shown to be equivalent to the fact that for each
compactly supported smooth vector field, X, we have

δV (X) =
∫

M
divMX d||V || = 0.

Upon an appropriate choice of radial test vector field (e.g. see [Sim84,
Section 17]), one obtains the monotonicity formula which states that, for
each x ∈ Rn+1, the mass ratio function

ρ 7→ ||V ||(Bρ(x))
ρk

,

is increasing in ρ, where Bρ(x) is the open ball, in Rn+1, of radius ρ
centred at x. An important consequence of this, when combined with
the Allard–Almgren compactness theorem discussed in Subsection 1.2.2,
is the existence of tangent cones; the blowup models at singular points
of stationary varifolds.

Definition 1.8. Given a point p ∈ Spt||V || and a sequence, {λj}j≥1

of positive numbers, λj → 0 as j → ∞, there exists a sub=sequence,
{λjl

}l≥1, and a non-trivial stationary k-varifold, Cp with

(ηp,λjl
)#V → Cp.

Here in the above, for each x, y ∈ Rn+1 and λ > 0 we define ηy,λ(x) =
x−y

λ
, the pushforward is defined as in Subsection 1.2.2, and the conver-

gence is in the sense of Radon measures. Furthermore, Cp is a cone, in
the sense that for each λ > 0 we have (η0,λ)#Cp = Cp and as such we
call Cp a tangent cone to V at the point p.

One may hope that, as a blowup model, tangent cones reflect the
local geometric behaviour of the varifold. It follows from the above that
if p ∈ Spt||V || is a point where a k-dimensional tangent plane exists
(which holds at at Hk almost every point of M by definition) then the
unique tangent cone to V at p is this tangent plane equipped with integer
multiplicity given by θ(p); in particular, this holds whenever p ∈ Reg(V ).

For singular points of the support however, the behaviour of tangent
cones in relation to the structure of the support is, as yet, less clear; we
highlight here the recent constructions in [Szé21] of stationary varifolds
with isolated singularities but cylindrical tangent cones of the form C×R,
for some singular cone C. Another severe issue at singular points is
whether or not a given tangent cone at a point p ∈ Sing(V ) depends on
the choice of sub-sequence, i.e. whether tangent cones are unique.
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This remains a largely open question, with a complete resolution only
for the case where k = 1 in [AA76]. Another important instance, partic-
ularly relevant to the thesis, is from the seminal work of [Sim83] (see also
the recent work of [EM24]), where uniqueness is known for regular tan-
gent cones (which we define as tangent cones with multiplicity 1 and an
isolated singularity, i.e. Sing(Cp) = {0}); this will play a key role in the
work in Chapter 2. Although there are no known examples of non-unique
tangent cones to stationary integer rectifiable varifolds, we mention here
the constructions in [Kol15] of non-unique tangent cones for stationary
rectifiable varifolds with non-integer multiplicity.

While the presence of higher integer multiplicity allows for the devel-
opment of a suitable existence theory for stationary varifolds, it creates
severe difficulties in establishing their regularity. In the most general
case of a stationary k-varifold, V = (M, θ), the best known regularity
conclusions are that Reg(V ) is dense in Spt||V ||, as shown in the land-
mark work of [All72]. In particular, it is not even known whether or
not Hk(Sing(V )) = 0; which could fail if for example Sing(V ) arose as a
positive measure Cantor set (relevant here are the recent constructions
of stationary varifolds with prescribed singular sets in [Sim23]).

The density of the regular set in the support in fact follows as a corol-
lary of an “ε-regularity theorem” in [All72], which we state as follows:

Theorem 1.3. (Allard’s theorem) If at a point in Spt||V || the multi-
plicity function, θ, is sufficiently close to 1, then in a neighbourhood of
this point Spt||V || is a smoothly embedded k-dimensional submanifold.
With reference to the definition of tangent cone above, this says that if a
multiplicity 1 tangent plane arises as a tangent cone at a point of the sup-
port of a stationary varifold, then locally the varifold is in fact a smooth
submanifold.

Although it is not known to what extent the support of a stationary
varifold is modelled by its tangent cones, one is able to transfer informa-
tion from the level of the tangent cone to the singular set of the varifold
by studying the dimensions along which they are translation invariant.
We summarise this in the following theorem, established in [Fed70] and
[Alm00] (see also [Sim84, Appendix A]):

Theorem 1.4. (Almgren–Federer stratification theorem) Let the spine,
S(C), of a given stationary cone, C, denote the linear subspace along
which Spt||C|| is translation invariant, we define for each j ∈ {0, . . . , k}
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the jth strata as the set

Sj = {p ∈ Sing(V ) | every tangent cone, Cp, has dim(S(Cp)) ≤ j};

so that S0 ⊂ S1 ⊂ · · · ⊂ Sk−1 ⊂ Sk = Sing(V ). We then have that

dimH(Sj) ≤ j.

It has more recently been shown in [NV20] that each strata, Sj, as
defined above is in fact j-rectifiable.

By controlling the maximal spine dimension of tangent cones, one
can thus hope to establish dimension bounds on the singular set of a
stationary varifold. In particular, if one can rule out the possibility of
a high multiplicity k-plane from arising as a tangent cone at a singular
point, one immediately deduces that the dimension of the singular set is
at most k − 1 by noticing that if a multiplicity 1 tangent plane arises at
a point, such a point must be in the regular set by Allard’s theorem as
stated above. As a consequence, if a stationary k-varifold, V = (M, θ), is
of multiplicity one, then we can in fact conclude from Allard’s theorem
that the dimension of the singular set is at most k−1; this is sharp in view
of the example of transversely intersecting planes given in Subsection
1.3.1. Whether or not this dimension bound remains true for higher
multiplicity stationary varifolds remains a largely open problem.

1.3.3 Stability and Simons classification

It is perhaps not so surprising that relying solely on such a weak condition
as stationarity is unable to yield the strongest possible regularity conclu-
sions. This is again analogous to the case of partial differential equations,
where often one needs to exploit second order behaviour (such as stability
arising from a minimisation property) of solutions in order to deduce fur-
ther regularity. Therefore, in order to yield improved dimension bounds
on the singular set, we will now restrict our attention to subclasses of
stationary varifolds satisfying appropriate second order conditions.

Definition 1.9. We define the second variation of a stationary k-varifold,
V = (M, θ), for a compactly supported smooth vector field, X, by setting

δ2V (X) = d2

dt2

∣∣∣∣∣
t=0

||Vt||(Rn+1),

where, the Vt are defined as in Subsection 1.2.2. We say that V is stable
if the second variation is non-negative, i.e. δ2V (X) ≥ 0.
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Stationary varifolds that correspond to locally area-minimising cur-
rents, a condition which immediately implies non-negativity of their sec-
ond variation, form an important subclass of stable varifolds (e.g. for
solving the Plateau problem). In the monolithic work of [Alm00] it was
shown that the dimension of the interior singular set of these varifolds
is at most k − 2 (we refer to Subsection 1.4.1 for further discussion of
results in high codimension); this dimension bound is sharp in view of
the example {(z, w) | z2 = w3} ⊂ C2, as discussed in Subsection 1.3.1.

An important consequence of stability in codimension 1 (i.e. when V
is a stationary n-varifold), which we now restrict to for the remainder of
the subsection, is the stability inequality. This states, see [Sim84, Section
9], that if Reg(V ) is orientable with continuous unit normal, ν, then we
may consider X = ξν (extended to Rn+1) for some compactly supported
smooth function, ξ, on Reg(V ) and deduce from the non-negativity of
the second variation that

∫
Reg(V )

|A|2ξ2 dHn ≤
∫

Reg(V )
|∇ξ|2 dHn,

where here |A| denotes the length of the second fundamental form, and
∇ represents the gradient on Reg(V ).

We can now state the following powerful result for stable minimal
hypercones as established in [Sim68].

Theorem 1.5. (Simons’ classification theorem) If n ∈ {2, 3, 4, 5, 6} and
C is a stable conical n-varifold with Sing(C) ⊂ {0}, then C is a hyper-
plane.

We remark that this result is sharp. It fails for n = 1 by virtue of
transversely intersecting lines, and for n = 7 by the existence of the so
called Simons cone, given by

C3,3 = {(x, y) ∈ R4 × R4 | |x| = |y|} ⊂ R8.

This was first observed to be stationary and stable in [Sim68]; which
follows from a simple calculation involving the first variation, see [Sim84,
Appendix B]. In fact, the Simons cone was also shown to be locally
area-minimising in [BDG69] and thus serves as the prototypical coun-
terexample to the smoothness of high-dimensional area-minimising (and
more generally stable) minimal hypersurfaces.

As a consequence of the Almgren–Federer stratification theorem men-
tioned above, the dimension of the singular set of a stationary n-varifold
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in Rn+1 is at most n− l, where l ∈ {0, . . . n} is the smallest integer such
that, at some singular point, there is some cylindrical tangent cone of
the form C × Rk−l, with C a stationary conical l-varifold (in Rl+1) with
Sing(C) ⊂ {0} (if l = 0 here we mean that the tangent cone is a, nec-
essarily higher multiplicity, hyperplane). Thus, if one can rule out both
high multiplicity n-planes and cones of the form C ×Rn+1, where C is a
stationary conical 1-varifold (in R2), arising as tangent cones at a singu-
lar point, then one in fact concludes from Simons classification theorem
above that the singular set is of dimension at most n−7. This dimension
bound is optimal in view of the example of the Simons cone introduced
above. As such, we say that a stationary n-varifold with singular set of
dimension at most n− 7 has optimal regularity.

1.3.4 Codimension 1 theory

What is perhaps surprising, and that we now turn our attention to, is
that the optimal regularity conclusion in codimension 1 in fact holds for
a wide range of stationary varifolds under rather weak stability assump-
tions. This includes stationary varifolds corresponding to locally area-
minimising currents in codimension 1 and, as we will define, stable codi-
mension 1 varifolds which admit no singularities with a specific geomet-
ric structure (which in fact subsumes the class of local area-minimisers).
We thus restrict our attention to the codimension 1 case for this subsec-
tion (without further comment) and will consider stationary n-varifolds,
V = (M, θ), in Rn+1.

We first discuss why local area-minimisers in codimension 1 have op-
timal regularity, i.e. we want to show that if V corresponds to a locally
area-minimising current, T , then dim(Sing(V )) ≤ n − 7. This is equiv-
alent, by the Almgren–Federer stratification theorem, to showing that
Sing(V ) = Sn−7 (where the strata, Sj, were defined in Subsection 1.3.2).
For each p ∈ Sing(V ) \ Sn−7, we can find (through iteratively taking
tangent cones if necessary) a tangent cone of the form C × Rn−l, where
here l ∈ {0, 1, 2, 3, 4, 5, 6}, and C is an area-minimising l-dimensional
cone (and hence a stable l-varifold in Rl+1) with Sing(C) ⊂ {0}. Simons
classification theorem above thus tells us that if l ∈ {2, 3, 4, 5, 6} then
C as above is a hyperplane, for which we then know we are in the case
l = 0 (and our tangent cone must a high multiplicity plane by Allard’s
theorem); thus we have that l ∈ {0, 1}.

If l = 1, then C is an area-minimising 1-dimensional cone in R2,
which one can easily check (by means of a simple comparison argument)
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is a straight line, and thus l = 0 is the only possibility. If l = 0 this
means that we are at a singular point that admits a high multiplicity
planar tangent cone, which we now preclude. As a consequence of the
decomposition theorem for codimension 1 integral currents, see [Sim84,
Corollary 27.8], we may write T as a sum of Caccioppoli sets, i.e. in a
ball, B, we have TxB = ∑∞

i=1 ∂[Ei] for open sets Ej+1 ⊂ Ei ⊂ B, where
here we recall that [A] is the n+ 1-current associated to an open set A.
Under the assumption that there is a high multiplicity planar tangent
at a singular point, p ∈ Sing(V ), the problem thus reduces to studying
the multiplicity 1 boundaries, ∂[Ei], with planar tangent cone; which
Allard’s theorem tells us are locally smooth. We have a sum of smooth
hypersurfaces which touch at the point p, but do not cross (as for each
j we have Ej+1 ⊂ Ej), from which the maximum principle (for minimal
graphs) tells us that these hypersurfaces coincide. We therefore conclude
that in fact p ∈ Reg(T ) and so the case l = 0 cannot occur, therefore
Sing(V ) = Sn−7 and so dim(Sing(V )) ≤ n− 7 as desired.

As an aside, we remark that without the application of Simons classi-
fication theorem in the above, one is able to establish that the dimension
of the singular set of an area-minimiser is at most n− 3, i.e. that l ≥ 3.
To see this, one repeats the arguments to rule out l ∈ {0, 1} as above and
to rule out the case l = 2, uses the fact that a 2-dimensional minimal
cone in R3 yields a smooth closed geodesic, a great circle, when inter-
sected with the round 2-sphere (else Sing(C) ⊂ {0} fails). We conclude
that the tangent cone is a thus a hyperplane (i.e. l = 0), which we had
already ruled out.

The area-minimisation assumption was only utilised in the above ar-
guments in order to rule out tangent cones arising as high multiplicity
hyperplanes and those with codimension 1 spine. With this established,
we concluded optimal regularity by applying Simons classification theo-
rem, which only required the weaker assumption of stability. One can
thus posit whether this optimal regularity conclusion may be obtained
for stable codimension 1 varifolds, provided one can preclude the two
types of tangent cones mentioned above from arising.

The first key result was obtained in [SS81] where, under an a pri-
ori smallness assumption on the size of the singular set, they conclude
optimal regularity for stable codimension 1 varifolds. This smallness as-
sumption, precisely assuming Hn−2(Sing(V )) = 0 (more generally one
can assume the singular set has vanishing 2-capacity), allows for the sta-
bility inequality, which originally held only on the regular part, to be
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extended across the singular set. By exploiting this smallness assump-
tion on the singular set, they exploit stability in order to rule out tangent
cones with codimension 1 spine. Furthermore, they are able to show that
if such a stable codimension 1 varifold is sufficiently close to a high mul-
tiplicity hyperplane, then it decomposes as a sum of smooth graphs (one
may think of this theorem as saying that the stability assumption rules
out the formation of small “necks”), such a result is known as a sheeting
theorem. This result in particular rules out tangent cones at singular
points arising as high multiplicity hyperplanes, from which one thus may
apply Simons classification and conclude optimal regularity.

A natural open question that remained after the work of [SS81] was
whether the smallness assumption on the size of the singular set could
be relaxed to Hn−1(Sing(V )) = 0; which is sharp in view of a pair of
transversely intersecting planes as discussed in Subsection 1.3.1. This was
entirely resolved in the monumental work of [Wic14a] which, by providing
sharp results for the class of stable codimension 1 varifolds, subsumes
both the results for codimension 1 area-minimisers as well as those of
[SS81]. The results in [Wic14a] have also found effective application in
the codimension 1 existence theory through the Allen–Cahn min-max
approach, which we will discuss in the next subsection.

We conclude this subsection by briefly discussing [Wic14a], starting
with a key definition.

Definition 1.10. A point p ∈ Sing(V ) is said to be a classical singularity
if there exists a ρ > 0 and α ∈ (0, 1) such that Spt||V ||∩Bρ(p) is the finite
union of three or more embedded n-dimensional C1,α submanifolds with
boundary in Bρ(y), meeting only along a common (n − 1)-dimensional
boundary, Γ, containing p with at least one pair meeting transversly; see
Figure 1.10.

One can in fact upgrade this C1,α regularity to analyticity, for analytic
ambient spaces, by the work of [Kru14].

Figure 1.10: A classical singularity formed by three sub-
manifolds meeting along a common boundary, Γ.
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The main result of relevance for us from [Wic14a] is the following:

Theorem 1.6. (Wickramasekera’s theorem) If V is a stationary codi-
mension 1 varifold with Reg(V ) stable and Sing(V ) containing no clas-
sical singularities, then V is of optimal regularity.

We remark that since any tangent cone at a classical singularity is
necessarily unique and has a codimension 1 spine, the above compari-
son argument for currents implies that any stable codimension 1 varifold
corresponding to a locally area-minimising current contains no classical
singularities; we then apply Wickramasekera’s theorem to conclude op-
timal regularity. Furthermore, if a stable codimension 1 varifold has a
classical singularity then, by definition, it must have singularities along
an (n − 1)-dimensional submanifold. Thus, under the assumption that
Hn−1(Sing(V )) = 0, V cannot contain any classical singularities; by ap-
plying Wickramasekera’s theorem we again conclude optimal regular-
ity. The above arguments therefore show that Wickramasekera’s theo-
rem implies both the optimal regularity results for codimension 1 area-
minimisers, as well as those of [SS81] (and in doing so answers the above
question regarding the smallness assumption on the singular set).

The proof of Wickramasekera’s theorem requires the use of two sep-
arate theorems; a sheeting theorem and the so called minimum distance
theorem. This sheeting theorem is similar in spirit to that of [SS81]
(which follows as a special case), but for stable codimension 1 varifolds
assumed now to be close in area as well as distance to a higher multi-
plicity hyperplane. The minimum distance theorem, which builds upon
techniques initially developed in [Sim93], shows that if a stable codimen-
sion 1 varifold contains no classical singularities, then no tangent cone
to V can have a codimension 1 spine. With both of these theorems at
hand, one readily establishes the optimal regularity conclusion by an ap-
plication of Simons classification theorem in the manner described above;
ruling out tangent cones at singular points arising as high multiplicity
hyperplanes and those with codimension 1 spine by applying the sheeting
and minimum distance theorems respectively.

An explanation of the proof of the sheeting and minimum distance
theorems (which involves proving these theorems by induction simultane-
ously) is unfortunately beyond the scope of our exposition and, as such,
we defer to the detailed exposition of the proof provided in [Wic14b].
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1.3.5 Applications to existence

We now detail how the regularity theory we have discussed above is
applied to stationary codimension 1 varifolds produced by the various
existence methods discussed in Section 1.2. For this subsection we again
consider (without further comment) stationary n-varifolds, V = (M, θ),
in Rn+1.

Following the min-max construction of stationary codimension 1 var-
ifolds in [Alm65], in [Pit81] it was established that such varifolds are in
fact entirely smooth hypersurfaces whenever n ≤ 5. The arguments there
relied on establishing an “almost-minimising” property (which in partic-
ular rules out tangent cones arising as high multiplicity hyperplanes and
those with codimension 1 spine) for the stationary varifolds produced
by the min-max, and crucially exploited curvature estimates for stable
immersed minimal hypersurfaces, valid for n ≤ 5, that had been proven
in [SSY75] (see recent work of [Bel23a] for the n = 6 case). As a conse-
quence of the work of [SS81], these curvature estimates were extended to
the embedded case for n = 6 and moreover showed that the stationary
codimension 1 varifolds produced in [Alm65] were in fact of optimal reg-
ularity. We now summarise this celebrated result, which is often referred
to in the literature as the Almgren–Pitts–Schoen–Simon existence theory
or Almgren–Pitts min-max procedure:

Theorem 1.7. Let (Nn+1, g) be a compact Riemannian manifold. For
n ≤ 6 then there exists an entirely smooth minimal hypersurface, if n = 7
then there exists a minimal hypersurface smooth away from finitely many
isolated singularities, and if n ≥ 8 there exists a minimal hypersurface
which is smooth away from a closed singular set of dimension at most
n− 7.

In particular, the existence of smooth minimal hypersurfaces for n ≤ 6
has paved the way for significant developments in low-dimensional geom-
etry and topology.

For the existence theory provided by the Allen–Cahn min-max ap-
proach of [Gua18], the regularity theory provided in [SS81] does not
suffice to establish the optimal regularity of the stationary codimension
1 varifolds produced. This is due to the fact that there is no obvious
“almost-minimising” property that one can establish for these varifolds
and so a priori, one has no way to rule out tangent cones at singular
points arising as high multiplicity hyperplanes. Thus, in order to estab-
lish the desired optimal regularity, one must appeal to the full strength
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of Wickramasekera’s theorem. Although one needs to appeal to stronger
regularity theory here, one major advantage of the Allen–Cahn min-max
approach stems from the fact that the existence and the regularity com-
ponents of the theory are entirely distinct. This is not the case for the
Almgren–Pitts min-max procedure described above however, which re-
quires additional technical work in order to exploit both the explicit
min-max construction as well as the regularity theory simultaneously.

The work of [Ton05] showed that if a sequence of critical points of
the Allen–Cahn energy with uniformly bounded energy is additionally
assumed to be stable (i.e. with non-negative second variation), the sta-
tionary codimension 1 varifold around which they accumulate (as guaran-
teed by [HT00]) is also stable. By precluding classical singularities from
arising in these varifolds, in [TW12] it was shown that Wickramasekera’s
theorem may be applied in order to guarantee that stable critical points
of the Allen–Cahn energy with uniformly bounded energy accumulate
around stationary codimension 1 varifolds with optimal regularity.

As an aside, it is interesting to note that the work of [Ton05] shows
that the limit varifold is in fact stable on the entirety of its support, and
not only on the regular set as required in the assumptions of Wickra-
masekera’s theorem, suggesting an alternate method to establish opti-
mal regularity for such varifolds by exploiting this stability information
across the singular set. Such a method would have the advantage of
avoiding needing the full strength of the Wickramasekera’s theorem, and
perhaps lead to a simplified proof of the existence and regularity theory
in codimension 1.

An elegant observation made in [Gua18, Section 3] was that if the
Morse index of a critical point of the Allen–Cahn energy (the dimen-
sion of the subspace along which the second variation is negative) is at
most 1, then for any ambient ball the critical point is stable either in
the ball or its complement (but not both). As remarked in Subsection
1.2.3, the min-max critical points of the Allen–Cahn energy constructed
in [Gua18] have Morse index bounded above by 1, and so using this ob-
servation along with the conclusions of [TW12] we deduce that the non-
trivial stationary codimension 1 varifolds produced by sending ε → 0
have optimal regularity (a slick alternative argument for deducing opti-
mal regularity in this setting was provided in [Hie18, Section 4.2]). In
particular, in low-dimensions (n ≤ 6) the Allen–Cahn min-max produces
entirely smooth minimal hypersurfaces, recovering the conclusions of the
Almgren–Pitts–Schoen–Simon existence theory in all dimensions.
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In the recent work of [BW20b, BW20c], sharp regularity theorems
were established for constant (and more generally prescribed) mean cur-
vature hypersurfaces, generalising the results of [Wic14a] in the station-
ary case. These regularity theorems in particular show that under a
suitably modified notion of stability, and again subject to the absence
of classical singularities, codimension 1 varifolds with constant gener-
alised mean curvature (i.e. constant mean curvature hypersurfaces) are
smoothly immersed (in fact quasi-embedded, see Subsection 2.1.2 of
Chapter 2 for a precise definition) away from a singular set of dimension
at most n − 7, i.e. of optimal regularity. In particular, this generalised
the optimal regularity conclusions obtained in [GMT83] for isoperimetric
regions.

We conclude this subsection by remarking that in the lowest singular
dimension (i.e. in ambient dimension 8), the optimal regularity conclu-
sions (both for the case of minimal hypersurfaces and constant mean
curvature hypersurfaces) guarantee that the support will be a smooth
hypersurface away from a singular set consisting of finitely many iso-
lated points (e.g. see the end of the proof in [Wic14a, Section 17]). This
case will be the main focus of Chapter 2 where we will show that, in var-
ious settings, one can perturb away all isolated singularities and produce
an entirely smooth hypersurface.

1.3.6 Perturbing away the singular set

As mentioned at the beginning of the Chapter, smooth hypersurfaces
arising as critical points of area-type functionals have proven to be in-
credibly effective through their applications in low-dimensional geometry
and topology. In the presence of a singular set however, such hypersur-
faces in general fail to be effective tools for applications. As such, one
may posit whether the singularities that appear in such hypersurfaces
are generic in a topological sense, and whether they can be perturbed
away. We now discuss some results in this direction that are of particu-
lar relevance to the thesis, a more complete summary of which may be
found in Subsection 1.4.2.

As mentioned above, the Simons cone, C3,3, introduced in Subsection
1.3.3 was first shown to be area-minimising in [BDG69]; establishing the
sharp regularity conclusions possible for stable codimension 1 varifolds.
In the proof of this fact, it was shown that the Simons cone is foliated by
entirely smooth area-minimising hypersurfaces. Namely, perturbations
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of the Simons cone, which is singular with an isolated singularity at the
origin, are entirely smooth.

This was generalised in the fundamental work of [HS85], where it was
shown that locally area-minimising currents containing only isolated sin-
gularities with regular tangent cone (i.e. multiplicity 1 with an isolated
singularity) were also locally foliated by entirely smooth area-minimisers.
As a consequence, this showed that subject to a small perturbation of the
boundary, area-minimisers in ambient dimension 8 were in fact smooth.
In recent work of [Les23], an analogous foliation result was established
for constant mean curvature hypersurfaces that locally minimise the ap-
propriate area-type functional around each isolated singularity.

In [Sma93], using the foliation of [HS85], the generic regularity of
area-minimisers in each non-trivial homology class in dimension 8 was
established. By generic regularity here we mean that, for an open and
dense subset of metrics on an 8-dimensional compact Riemannian man-
ifold, one can find a smooth area-minimising hypersurface in each non-
trivial homology class.

In [CLS22] a generic regularity result was established in 8-dimensional
compact Riemannian manifolds with positive Ricci curvature. In this set-
ting it was shown, through the Almgren–Pitts min-max procedure and a
local metric surgery exploiting the foliation of [HS85], that for a generic
metric there existed a smooth minimal hypersurface. In Chapter 2 we
develop a similar local metric surgery procedure for isolated singularities
of constant mean curvature hypersurfaces that exploits the above men-
tioned foliation of [Les23]. We then use this to establish, through the
Allen–Cahn min-max procedure of [BW20a], analogous generic regular-
ity results for constant mean curvature hypersurfaces in 8-dimensional
compact Riemannian manifolds with positive Ricci curvature.

By developing specific global metric perturbations, as opposed to
the local ones exploited in the above mentioned perturbation results, in
[LW21] the generic regularity of minimal hypersurfaces in 8-dimensional
compact Riemannian manifolds (with no curvature assumptions) was es-
tablished; guaranteeing the existence of a smooth minimal hypersurface.
This was further extended in [LW22] to show that full generic regularity
held, namely that for an open and dense subset of the Riemannian met-
rics on an 8-dimensional compact Riemannian manifold every minimal
hypersurface (with no classical singularities) is in fact smooth.

The results of [HS85] and [Sma93] were generalised in more recent
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remarkable work of [CMS23a, CMS23b] (building on developments in
the mean curvature flow, see Subsection 1.4.2), where generic regularity
results were established up to ambient dimension 10. More precisely,
they established that, subject to a perturbation of the boundary or of the
ambient metric, area-minimising hypersurfaces are generically smooth.

We also mention here the interesting recent work of [ST20], showing
that (under appropriate decay rate conditions) singular points of station-
ary, multiplicity 1, codimension 1 varifolds admitting high multiplicity
hyperplane tangent cones are in an appropriate sense dynamically unsta-
ble with respect to the mean curvature flow; suggesting that the stability
of stationary varifolds with respect to the mean curvature flow can rule
out certain types of singularities.

1.4 Historical primer

Having provided relevant background in the previous two sections, we
now offer a very brief survey summarising developments in the existence
and regularity theory for the area functional as discussed in Subsections
1.2 and 1.3. Following this, we summarise some generic regularity results
for a range of geometric variational problems.

1.4.1 A brief survey

The Plateau problem for surfaces was originally investigated by Lagrange
in 1760, and was first resolved independently in [Dou31, Rad30]; the
surfaces produced by these results were in fact shown to be smooth in
[Oss70]. We also mention here the alternative approach taken to the
Plateau problem in the novel work of [Rei60], producing solutions of
varying topological type.

The pioneering work of [DG61] showed that locally area-minimising
Caccioppoli sets in fact have smooth n-dimensional boundary away from
a closed interior singular set of zero n-dimensional Hausdorff measure.
This regularity conclusion was successively strengthened and, through
the work of [FF60] (which also proved more general existence), [Sim68]
and [Fed70], led to the conclusion that the interior singular set of the
locally area-minimising hypersurface is in fact empty if n ≤ 6, discrete
if n = 7, and has Hausdorff dimension at most n − 7 if n ≥ 7; which
we refer to as optimally regular. The work of [BDG69] showed that this
regularity conclusion was sharp for local area-minimisers by establishing
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that the singular Simons cone, C3.3, introduced in [Sim68] was in fact
locally area-minimising.

For regularity at the boundary, the work of [HS79] completed the reso-
lution of the Plateau problem in codimension 1 by showing that solutions
are entirely smooth in a neighbourhood of any C1,α-regular boundary;
see also [All75] and [Bou15] concerning boundary regularity properties
of stationary varifolds.

In the higher codimension case, the monolithic work of [Alm00] showed
that the interior singular set of a k-dimensional area-minimiser was of
Hausdorff dimension at most k − 2; which is sharp in view of exam-
ples of the locally area-minimising singular complex analytic variety,
{(z, w) | z2 = w3} ⊂ C2, as discussed in Subsection 1.3.1. This was
revisited in a series of papers, [DS11, DS14, DS16a, DS16b], providing a
more streamlined proof of the result. We also mention here the recent
works [KW23] and [DMS24] concerning finer properties of the singular
set of high codimension area-minimisers and refer the reader to the ref-
erences therein for a summary of modern theory in this direction.

The regularity conclusions for codimension 1 area-minimisers were
shown to hold for stable minimal hypersurfaces in [SS81] and led, in
combination with the works [Alm65], [SSY75] and [Pit81], to the exis-
tence of optimally regular minimal hypersurfaces in any compact Rie-
mannian manifold. In particular, the Almgren–Pitts min-max procedure
was utilised in [MN14] in order to establish the validity of the Willmore
conjecture and has found a number of other fascinating results in low-
dimensional geometry, for which we refer to the survey [MN20] and the
references therein. This ultimately culminated in establishing the ex-
istence of infinitely many minimal hypersurfaces in low dimensions in
[Son23]; see also [Li23] which established the existence of infinitely many
optimally regular minimal hypersurfaces in a generic Riemannian mani-
fold.

The Allen–Cahn min-max approach introduced in [Gua18], building
on work of [HT00], [Ton05], [TW12] and [Wic14a], provided an alter-
native route to establish the existence of optimally regular minimal hy-
persurfaces in any compact Riemannian manifold of dimension at least
3; this min-max procedure was also carried out on surfaces in [Man21].
In recent years there has been a large amount of interest in developing
this Allen–Cahn min-max approach to better understand minimal hyper-
surfaces; we highlight here the works [Hie18], [Gas19], [GG18], [GG19],
[CM20] and [CM23].
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In [BW20b] and [BW20c], the sharp regularity theory for hypersur-
faces of prescribed mean curvature was developed. These were exploited
in [BW20a], alongside a min-max procedure for a modified Allen–Cahn
energy functional, in order to produce optimally regular hypersurfaces
with mean curvature prescribed by any non-negative Lipschitz function;
in particular, when the prescribing function is taken to be a constant,
this min-max produces constant mean curvature hypersurfaces.

1.4.2 Previous work on generic regularity

As this thesis is specifically concerned with the generic regularity of con-
stant mean curvature hypersurfaces in ambient dimension 8, and is re-
lated to previous work concerning minimal hypersurfaces, we first briefly
summarise those works on generic regularity for minimal hypersurfaces
in ambient dimension 8 relevant to the thesis:

• The existence of the Simons cone, introduced in [Sim68], showed
that stable minimal hypersurfaces may admit isolated singularities
in dimension 8.

• In [HS85] it was shown that every area-minimising cone with an
isolated singularity is foliated (to both sides) by entirely smooth
area-minimising hypersurfaces.

• The generic regularity of area-minimisers in each non-zero homol-
ogy class was established in [Sma93], using the above foliation result
of [HS85].

• In [CLS22], using the Almgren–Pitts min-max procedure and the
foliation of [HS85] (in particular the one-sided extension in [Liu19]),
the existence of smooth minimal hypersurfaces was established in
manifolds equipped with a generic metric of positive Ricci curva-
ture.

• In [LW21] it was shown that every 8-dimensional closed manifold
equipped with a generic metric (with no curvature assumption)
admits a smooth minimal hypersurface. See also [LW22], where it
is shown that for a generic metric, every embedded locally stable
minimal hypersurface is smooth in dimension 8.

We also provide a non-exhaustive summary of work on generic regularity
for other geometric variational problems:
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• In [CMS23a] and [CMS23b] generic regularity of area-minimising
minimal hypersurfaces is established, in various settings, up to am-
bient dimension 10.

• In [Whi85] and [Whi19] it is shown that for a generic ambient
metric, every 2-dimensional surface (integral current or flat chain
mod 2) without boundary that minimises area in its homology class
has support equal to a smoothly embedded minimal surface.

• In [Moo06] and [Moo17] it is shown that for a generic ambient
metric, parameterised 2-dimensional minimal surfaces are free of
branch points.

• In [CCMS20] and [CCMS22] an analogy was established between
mean curvature flow with generic initial data and the generic reg-
ularity of area-minimising hypersurfaces.

• In [FRS20] the generic regularity of free boundaries for the obstacle
problem is established up to ambient dimension 4.
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Chapter 2

Generic regularity via
min-max

2.1 Introduction

The Allen–Cahn min-max procedure in [BW20a], with constant pre-
scribing function, shows that in a compact 8-dimensional Riemannian
manifold there exists a quasi-embedded hypersurface of constant mean
curvature, with a singular set consisting of finitely many points (see Sub-
section 2.1.2 for a precise description). One may thus conjecture the
existence of a smoothly embedded constant mean curvature hypersur-
face in all 8-dimensional Riemannian manifolds under some assumption
on the metric; for example a genericity assumption. As a first step, in
this chapter we resolve this for manifolds with positive Ricci curvature:

Theorem 2.1. Let N be a smooth compact 8-dimensional manifold and
λ ∈ R. There is an open and dense subset, G, of the smooth metrics with
positive Ricci curvature such that for each g ∈ G, there exists a closed
embedded smooth hypersurface of constant mean curvature λ in (N, g).

We will actually prove more general results valid in higher dimen-
sions, showing the generic existence of a closed embedded hypersurface
of constant mean curvature, with singular set of codimension 7, contain-
ing no isolated singularities with regular tangent cone. Indeed, Theorem
2.1 is a consequence of the following:

Theorem 2.2. Let N be a smooth compact manifold of dimension n+1 ≥
3 and λ ∈ R. There is a dense subset, G, of the smooth metrics with
positive Ricci curvature such that for each g ∈ G, there exists a closed
embedded hypersurface of constant mean curvature λ, smooth away from
a closed singular set of Hausdorff dimension at most n − 7, containing
no isolated singularities with regular tangent cone in (N, g).
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Remark 2.1. Let Metk,α
Ricg>0(N), for each k ≥ 1 and α ∈ (0, 1), denote

the open subset of Riemannian metrics of regularity Ck,α on N with posi-
tive Ricci curvature. In the proof of Theorem 2.2 we in fact establish that
there exists a dense set, Gk ⊂ Metk,α

Ricg>0(N), such that for each g ∈ Gk,
the same existence conclusion of Theorem 2.2 holds.

The focus of the present chapter concerns the generic regularity of
constant mean curvature hypersurfaces in ambient dimensions 8 or higher
and is related to previous work concerning minimal hypersurfaces. We
now briefly recall those works on generic regularity for minimal hyper-
surfaces in ambient dimension 8 that are relevant to this chapter:

• The existence of the Simons cone, introduced in [Sim68], showed
that stable minimal hypersurfaces may admit isolated singularities
in dimension 8.

• The generic regularity of area-minimising hypersurfaces in each
non-trivial homology class was established in [Sma93], using the
fundamental foliation result of [HS85].

• In [CLS22], using the Almgren–Pitts min-max procedure and the
foliation of [HS85] (in particular the one-sided extension in [Liu19]),
the existence of smooth minimal hypersurfaces was established in
manifolds equipped with a generic metric of positive Ricci curva-
ture.

Both [Sma93] and [CLS22] exploit local foliations by area-minimising hy-
persurfaces, provided by [HS85], allowing for a surgery procedure to be
established in order to perturb away an isolated singularity with regular
tangent cone. Recently an analogous foliation was established in [Les23]
for constant mean curvature hypersurfaces that locally minimise a pre-
scribed mean curvature functional to at least one side. Such a foliation,
to one side of the hypersurface, provides a natural means to perturb away
an isolated singularity with regular tangent cone via a surgery procedure;
we develop such a procedure in Section 2.2.

Remark 2.2. The surgery procedure developed in Section 2.2 of this
chapter may be immediately applied to isolated singularities with regular
tangent cone that arise in boundaries of isoperimetric regions. In particu-
lar, this surgery procedure allows for all such singularities to be perturbed
away in dimension 8 and results in a smooth hypersurface of constant
mean curvature; for details and further discussion see Subsection 2.2.2.

In order to guarantee the existence of such a local foliation, one needs
to establish that the tangent cones to isolated singularities of a candidate
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hypersurface are area-minimising; we establish this for all hypersurfaces
of constant mean curvature arising from the Allen–Cahn min-max proce-
dure in [BW20a] (with constant prescribing function) in manifolds with
positive Ricci curvature.

The Allen–Cahn min-max procedure in [BW20a] produces in the first
instance a quasi-embedded hypersurface of constant mean curvature with
a possibly non-empty singular set of codimension at least 7. The results
of [BW24] then establish that in manifolds with positive Ricci curvature
the above hypersurface of constant mean curvature in fact attains the
min-max value (in a manner made precise in Subsection 2.1.2) and is
embedded, with the above dimension bound on the singular set. We
thus start to work with this hypersurface as a candidate to perturb away
isolated singularities with regular tangent cone via our surgery procedure.

For a compact Riemannian manifold (N, g) and λ ∈ R we define the
Fλ functional on a Caccioppoli set, F ⊂ N , by

Fλ(F ) = Perg(F ) − λVolg(F ).

Recall that (e.g. as shown in [BW20b, Proposition B.1]) smooth constant
mean curvature hypersurfaces are locally Fλ-minimising. The main tech-
nical result of this chapter shows that this Fλ-minimisation also holds
in sufficiently small balls around isolated singularities for constant mean
curvature hypersurfaces produced by the Allen–Cahn min-max in mani-
folds with positive Ricci curvature:

Theorem 2.3. Let (N, g) be a smooth compact Riemannian manifold of
dimension n + 1 ≥ 3, with positive Ricci curvature, and λ ∈ R. The
one-parameter Allen–Cahn min-max procedure in [BW20a], with con-
stant prescribing function λ, produces a closed embedded hypersurface of
constant mean curvature λ which is smooth away from a closed singular
set of Hausdorff dimension at most n− 7, locally Fλ-minimising in balls
around each isolated singularity. Precisely, this constant mean curvature
hypersurface arises as the boundary of a Caccioppoli set, E ⊂ N , and for
each isolated singularity, p ∈ ∂∗E \ ∂∗E, there exists an explicit r > 0
such that

Fλ(E) = inf
G∈C(N)

{Fλ(G) |G \Br(p) = E \Br(p)},

where C(N) is the set of Caccioppoli sets in N . Consequently, the hyper-
surface has area-minimising tangent cones at each isolated singularity.
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Remark 2.3. In the case that λ = 0, Theorem 2.3 shows that min-
imal hypersurfaces produced by the Allen–Cahn min-max procedure in
[Gua18] in manifolds with positive Ricci curvature are in fact locally
area-minimising (to both sides), as opposed to just one-sided homotopy
minimising as obtained via the Almgren–Pitts min-max procedure in the
results of [CLS22]. These minimising properties immediately pass to tan-
gent cones. Stable regular minimal cones that do not minimise area are
known to exist, for example the Simons cone

C1,5 =
{
(x, y) ∈ R2 × R6 | 5|x|2 = |y|2

}
,

is stable and one-sided area-minimising, but is not area-minimising to
the other side (see [Law91]). Such a cone is not explicitly ruled out in
[CLS22] from arising as a tangent cone to a min-max minimal hyper-
surface at an isolated singularity. Theorem 2.3 precludes such tangent
cones. We also note that in the Allen–Cahn framework, obtaining an
absolute area-minimisation property, as opposed to a homotopic minimi-
sation property, appears to be natural; indeed the relevant space where
the min-max is carried out is W 1,2(N), which is contractible.

2.1.1 Chapter notation

We now collect various notation and definitions that will be used through-
out the chapter:

• Unless otherwise stated, throughout this chapter we let (Nn+1, g)
be a compact (with empty boundary) Riemannian manifold of di-
mension n+ 1 ≥ 3 with positive Ricci curvature, Ricg > 0. We will
always implicitly assume that N is connected.

• We let M ⊂ N be denote a non-empty, smooth, two-sided, sepa-
rating, embedded hypersurface of constant mean curvature λ ∈ R,
with closed singular set, Sing(M) = M \M , of Hausdorff dimension
at most n − 7 (we adopt this slight abuse of notation throughout,
where precisely we are considering the multiplicity one varifold,
V = (M, 1), with Reg(V ) = M and thus set Sing(M) = Sing(V ) =
M \ M as defined in Subsection 1.3.1). As M is a separating hy-
persurface, we may write the complement of its closure, N \M , as
two disjoint open sets, E and N \ E, with common boundary M .

• We say that p ∈ Sing(M) is an isolated singularity of M if there
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exists some Rp > 0 such that

Sing(M) ∩BRp(p) = {p},

i.e. such that M ∩ BRp(p) is smooth. Moreover, we say that a
multiplicity one tangent cone, Cp, to M at an isolated singularity,
p ∈ Sing(M), is a regular tangent cone if Sing(Cp) = {0}, where 0
here denotes the origin in Rn+1. We note that the tangent cone to
M at an isolated singularity with regular tangent cone is necessarily
unique by the work of [Sim83].

• A measurable set F ⊂ N is a Caccioppoli set (often called a set of
finite perimeter) if

Perg(F ) = sup
{∫

E
divgϕ

∣∣∣∣∣ ϕ ∈ Γ(TN), ||ϕ||∞ ≤ 1
}
< ∞,

where divg is the divergence with respect to the metric g, Γ(TN)
is the set of vector fields of regularity C1 on N and || · ||∞ denotes
the supremum norm. We denote by C(N) the set of Caccioppoli
sets in N . Our main reference for Caccioppoli sets will be [Mag12].

• By De Giorgi’s Structure Theorem we have that the distributional
derivative, DgχF (which is a Radon measure), of the the indicator
function, χF , of a Caccioppoli set F is given by

DgχF = −νF Hnx∂∗F,

where ∂∗F is the reduced boundary of F (an n-rectifiable set along
which there is an inward pointing unit normal for F , for a precise
definition see e.g. [Mag12, Section 15]), Hn = Hn

g (we will omit
the subscript g when the metric choice is clear from context) is the
n-dimensional Hausdorff measure and νF is the unit normal to ∂∗F

pointing into F defined Hn-a.e. (almost everywhere). Note then
that Perg(F ) = Hn(∂∗F ).

• We define the following prescribed mean curvature functional on
measurable subsets of N : for a measurable set F ⊂ N we let

Fλ(F ) = Perg(F ) − λVolg(F ) + λ

2 Volg(N),

where here Volg denotes the n+ 1-dimensional Hausdorff measure
Hn+1 = Hn+1

g . We remark that this definition differs from that of
Section 2.1 by the addition of the constant λ

2 Volg(N). Note however

59 of 151



2.1. Introduction 2. Generic regularity via min-max

this addition of a constant does not affect the set of critical points
of the functional Fλ and is made purely for convenience of notation
in forthcoming computations.

• With the above two definitions in mind, we denote throughout this
chapter ν to be the unit normal to M pointing into E and write
M = ∂∗E; by viewing M = ∂∗E as the reduced boundary of the
Caccioppoli set E we have that E is a critical point for Fλ (as M
is assumed to have constant mean curvature).

• We will frequently utilise the notions of integer rectifiable currents
and varifolds throughout this chapter; the main reference for the
notation and definitions used throughout is [Sim84].

• Let distN denote the Riemannian distance (implicitly with respect
to the metric g) on N and define the distance function to M , dM ,
on N by setting for each x ∈ N ,

dM(x) = distN(x,M).

We then have that dM is Lipschitz on N (with Lipschitz constant
equal to 1) and, as N is complete, for each x ∈ N there exists a
geodesic realising the value dM(x). Furthermore, we let

d(N) = sup
x,y∈N

dN(x, y)

denote the diameter of N , which is finite as N is compact.

• We fix an Rl > 0 (dependent on the metric g) such that for every
R ∈ (0, Rl) and each point p ∈ N we have that the ball BR(p) ⊂ N

of radius R centred at a point p ∈ N is 2-bi-Lipschitz diffeomor-
phic, via a geodeisic normal coordinate chart, to the Euclidean ball,
BRn+1

R (0) ⊂ Rn+1 of radius R centred at the origin in Rn+1.

• For ε ∈ (0, 1) we denote the Allen–Cahn energy of a function u ∈
W 1,2(N) by

Eε(u) = 1
2σ

∫
N
eε(u) = 1

2σ

∫
N

ε

2 |∇u|2 + W (u)
ε

,

where W is a C2 double-well potential with non-degenerate minima
at ±1, cW ≤ W ′′(t) ≤ CW for constants cW , CW > 0 for all t ∈
R \ [−2, 2] and σ =

∫ 1
−1

√
W (t)/2 dt. A standard choice of double-

well potential is
W (u) = (1 − u2)2

4 .
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Note here that we are considering the energy density eε(u) as the
measure

eε(u) =
(
ε

2 |∇u|2 + W (u)
ε

)
dHn+1

g .

• We will consider the following functional, which we shall frequently
refer to throughout this chapter simply as the energy, defined for
functions u ∈ W 1,2(N) by

Fε,λ(u) = Eε(u) − λ

2

∫
N
u.

With reference to the definition of the functional Fλ above, we
remark that the addition of the constant λ

2 Volg(N) in the definition
was made to ensure that (in a manner made precise in Subsection
2.3.3) the energy, Fε,λ, provides a suitable approximation of the
functional Fλ as ε → 0.

2.1.2 Allen–Cahn min-max preliminaries

The Allen–Cahn min-max procedure in [BW20a] produces a hypersurface
with mean curvature prescribed by an arbitrary non-negative Lipschitz
function, and provides sharp dimension bounds on the singular set.

We recall this procedure in the case relevant to this chapter, in which
the metric is assumed to have positive Ricci curvature, and the pre-
scribing function is a non-negative constant λ; for producing a candidate
hypersurface of constant mean curvature λ < 0 one can simply consider
−λ in the results below (this amounts to a change in the choice of unit
normal to M); thus, without loss of generality, in this chapter we assume
that λ ≥ 0. The constant mean curvature hypersurfaces produced by
this procedure will, after establishing Theorem 2.3, be the candidates for
our surgery procedure established in Section 2.2.

For ε ∈ (0, 1) there exist two constant functions, aε and bε, on N ,
arising as stable critical points of Fε,λ with the properties that

−1 < aε < −1 + cε

+1 < bε < +1 + cε
,

and thus aε → −1 as ε → 0

bε → +1 as ε → 0
.

Here in the above the constant c > 0 depends only on the choices of W
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and λ. These functions are constructed in [BW20a, Section 5] by means
of the negative gradient flow, through constant functions, of Fε,λ starting
at ±1. In particular, there are continuous paths of functions in W 1,2(N)
connecting aε to −1 and bε to +1, provided by the negative gradient flow
of Fε,λ; in particular the energy along these paths is bounded from above
by Fε,λ(−1) and Fε,λ(+1) respectively.

For each ε ∈ (0, 1) a min-max critical point, uε ∈ W 1,2(N), of Fε,λ

may be constructed, with supN |uε| uniformly bounded and Eε(uε) uni-
formly bounded from above and below by positive constants (indepen-
dently of ε). This is done by applying a mountain pass lemma, for paths
between the two stable critical points aε and bε, based on the fact that
the energy, Fε,λ, satisfies a Palais-Smale condition. The Morse index of
the critical points, uε, will then all be equal 1, as noted in [BW20a, Re-
mark 6.7], by virtue of the fact that if Ricg > 0 then aε and bε are the
only stable critical points of the energy functional Fε,λ.

By general principles, the uniform bounds on supN |uε| and Eε(uε)
above imply that there exist a sequence εj → 0, a non-zero Radon mea-
sure, µ, on N and a function, u∞ ∈ BV (N) with u∞ = ±1 for a.e.
x ∈ N , such that for the min-max critical points, {uεj

}∞
j=1, we have, as

εj → 0, that:


1
2σ
eεj

(uεj
) → µ weakly as measures

uεj
→ u∞ strongly in L1(N)

.

Defining E = {u∞ = 1}, we note that E is a Caccioppoli set with its
reduced boundary ∂∗E ⊂ Sptµ; moreover, as Ricg > 0 we have that
E 6= ∅ by the arguments in [BW20a, Remark 6.7].

We now introduce a key definition:

Definition 2.1. [BW20a, Definition 8] A quasi-embedded hypersurface
is a smooth immersion such that in an open neighbourhood of each non-
embedded point, the image of the immersion is the union of two embedded
C2,α disks intersecting tangentially, with each disk lying on one side of
the other. Equivalently, near each non-embedded point of the image, the
immersion is a union of two graphs over a common tangent plane, with
one graph lying above the other.

Prototypical examples of quasi-embedded constant mean curvature
hypersurfaces are provided by two spheres touching at a point and two
cylinders touching along a line.
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In [BW20a], relying on the combined works of [HT00] and [RT07], it
is then established that the measure µ above is in fact the weight measure
of an integer rectifiable n-varifold V with the following properties:

• V = V0 + Vλ.

• V0 is a (possibly zero) stationary n-varifold on N with Sing(V0)
empty if 2 ≤ n ≤ 6, Sing(V0) discrete if n = 7 and Sing(V0) of
Hausdorff dimension ≤ n− 7 when n ≥ 8.

• Vλ = |∂∗E| 6= 0 (by [BW20a, Remark 6.7] when Ricg > 0 as
noted above), is the multiplicity one n-varifold associated with the
reduced boundary ∂∗E. Moreover, Spt(Vλ) is a quasi-embedded
hypersurface of constant mean curvature λ with respect to the unit
normal pointing into E, away from a closed set which is empty if
2 ≤ n ≤ 6, discrete if n = 7 and of Hausdorff dimension ≤ n − 7
when n ≥ 8.

For a more detailed description of the definitions and results above we
refer the reader to [BW20a, Sections 3 and 4].

As in [BW24, Theorem 2], whenever we assume λ 6= 0 the path we
exhibit, for all ε > 0 sufficiently small, in Subsection 2.5.4 with the upper
energy bounds provided by Lemma 2.5 (these bounds are depicted by the
dashed lines in Figure 2.1) between +1 and −1, along with short paths of
constant functions connecting +1 to bε and −1 to aε, proves that V0 = 0;
i.e. that the min-max procedure produces no minimal piece in manifolds
with positive Ricci curvature when λ 6= 0. Using this we then note that
as we have 1

2σ
eεj

(uεj
) → µ as εj → 0 and E = {u∞ = 1} we have

Fεj ,λ(uεj
) → Fλ(E) as εj → 0, (2.1)

i.e. by which we have that the constant mean curvature hypersurface at-
tains the min-max value in an appropriate sense. In the proof of Theorem
2.3, under the contradiction assumption that our candidate hypersurface
produced by the above procedure does not satisfy a local minimisation
property, we will exploit (2.1) by constructing continuous paths of func-
tions in W 1,2(N) for all ε > 0 sufficiently small, admissible in the min-
max construction above, with energy along the paths bounded above
by a value strictly below Fλ(E) (independently of ε); thus violating the
min-max characterisation of E.

In fact, by [BW24, Theorem 4], for λ 6= 0 we have that ∂∗E is fully
embedded (rather than quasi-embedded). Moreover, ∂∗E is connected,
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has index 1 and is separating in the sense that N \ ∂E may be written
as the union of two disjoint open sets whose common boundary is ∂E.
The same properties hold for E in the case that λ = 0 by combining the
results of [Gua18, Theorem A] with [Bel23b, Theorem 1.8].

To summarise, we know that for a compact Riemannian manifold of
dimension n + 1 ≥ 3 with positive Ricci curvature, the properties of M
as stated in Subsection 2.1.1 hold for any constant mean curvature hy-
persurface produced by the Allen–Cahn min-max procedure of [BW20a]
when the prescribing function is taken to be the constant λ.

2.1.3 Proof strategy

The results of this chapter can be divided up into the following three
distinct steps that combine to prove Theorems 2.1, 2.2 and 2.3:

1. Functions to geometry: We relate the local geometric behaviour
of constant mean curvature hypersurfaces produced by the Allen–
Cahn min-max procedure to the ε → 0 energy properties of specific
W 1,2(N) functions.

2. Paths of functions: By exhibiting an admissible min-max path,
we establish that the energy properties for the functions from Step
1 hold. We use this to establish that the constant mean curvature
hypersurfaces generated through the Allen-Cahn min-max proce-
dure in positive Ricci curvature are locally Fλ-minimising around
their isolated singularities.

3. Surgery procedure: We show how to perturb constant mean
curvature hypersurfaces that are locally Fλ-minimising around iso-
lated singularities with regular tangent cone, resulting in a smooth
hypersurface of constant mean curvature.

We now sketch these three steps in more detail in order to clearly outline
our arguments and later technical work for the reader:

1. Functions to geometry: We aim to show that, when the ambient
metric is assumed to have positive Ricci curvature, the hypersurfaces
of constant mean curvature λ produced by the Allen–Cahn min-max
procedure in [BW20a] are in fact locally Fλ-minimising. In order to
do this we will first relate the local Fλ-minimisation we desire to the
ε → 0 energy behaviour of specific W 1,2(N) functions defined from such
a hypersurface.
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Rather than work directly with the min-max critical points of Fε,λ

produced in [BW20a] we instead introduce, in Subsection 2.3.3, a func-
tion, vε ∈ W 1,2(N), which we call the one-dimensional profile. This func-
tion is constructed by placing a truncated version of the one-dimensional
solution to the Allen–Cahn equation, Hε, (explicitly constructed in Sub-
section 2.3.3) in the normal direction to an underlying hypersurface, M ,
of constant mean curvature λ as defined in Subsection 2.1.1. Precisely,
we define

vε = Hε ◦ d±
M
,

where here d±
M

is the Lipschitz signed distance function to M , taking
positive values in E and negative values in N \ E. The function vε is
then shown to act as an approximation of the hypersurface M in the
sense that, analogously to (2.1), we have

Fε,λ(vε) → Fλ(E) as ε → 0. (2.2)

In Subsection 2.4.2, for an isolated singularity, p ∈ Sing(M), ε > 0
sufficiently small and radius ρ > 0, we minimise Fε,λ over a class of func-
tions Aε,ρ(p). The set Aε,ρ(p) is, roughly speaking, all W 1,2(N) functions
agreeing with vε outside of the ball of radius ρ centred at p. The min-
imiser of this problem is thus a function, gε ∈ W 1,2(N), that agrees with
vε outside of the ball Bρ(p) and is such that

Fε,λ(gε) = inf
u∈Aε,ρ(p)

Fε,λ(u). (2.3)

Note that the notation used for gε suppresses the dependence on p ∈
Sing(M) and ρ > 0 used in the construction; in each instance that the
functions gε are utilised the choice of isolated singularity and radius in
question will be made explicit. We then produce, in Subsection 2.4.3, a
sequence of “recovery functions”, admissible in the minimisation problem
that produced gε above, for any local Fλ-minimiser. Precisely, in the
vein of [KS89], for each local Fλ-minimiser, F ∈ C(N), agreeing with
E outside of B ρ

2
(p), we show that there exists a sequence of functions,

fε ∈ Aε,ρ(p), for all ε > 0 sufficiently small such that

Fε,λ(fε) → Fλ(F ) as ε → 0. (2.4)

As fε ∈ Aε,ρ(p) we conclude that by (2.3) we have

Fε,λ(gε) ≤ Fε,λ(fε).
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In particular, by (2.2), (2.3) and (2.4), if we assume that

Fε,λ(vε) ≤ Fε,λ(gε) + τε for some sequence τε → 0 as ε → 0, (2.5)

then
Fλ(E) ≤ Fλ(F ),

so that E is Fλ-minimising in B ρ
2
(p). In this manner we have related, via

(2.5), the ε → 0 energy behaviour of specific W 1,2(N) functions, namely
vε and gε, defined from a hypersurface as produced by the Allen–Cahn
min-max procedure, to the geometric behaviour of the underlying hyper-
surface; precisely, if (2.5) holds then E is locally Fλ-minimising. In order
to prove Theorem 2.3 we will therefore turn our attention to establishing,
as sketched in Step 2 below, that (2.5) holds for all constant mean cur-
vature hypersurfaces produced by the Allen–Cahn min-max procedure in
manifolds with positive Ricci curvature.

In order to produce the “recovery functions” as described above we
first establish a local smoothing procedure for Caccioppoli sets that are
smooth in an annular region. This is done by a “cut-and-paste” style
argument using Sard’s Theorem on the level sets of mollified indicator
functions for the Caccioppoli set, full details of this procedure can be
found in Subsection 2.4.1. We emphasise that this local smoothing pro-
cedure we exhibit for Caccioppoli sets is not, in and of itself, sufficient to
establish Theorem 2.1. The reason for this is that the local smoothing
we produce provides no control on the mean curvature near the isolated
singularity, and this lack of control makes it difficult to perturb the met-
ric in the same manner as in Step 3. However, the foliation provided by
[Les23] ensures there always exists a sequence of smooth hypersurfaces of
constant mean curvature λ converging to the singular hypersurface, al-
lowing for the surgery to be carried out directly in the manner described
in Step 3 below.

2. Paths of functions: Similarly to the strategy employed in previ-
ous works on hypersurfaces produced by the Allen–Cahn min-max pro-
cedure, for example in [Bel23b], [BW20a], and [BW24], establishing that
(2.5) holds, in order to conclude the proof of Theorem 2.3, is achieved
by exhibiting a suitable continuous path in W 1,2(N).

Under the assumption that a hypersurface produced by the min-max
procedure violates a desired property, one basic idea is to exploit its min-
max characterisation as follows. If a path admissible in the min-max
procedure may be produced, with energy along this path bounded above
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by a constant strictly less than the min-max value, then one contradicts
the assumption that such a hypersurface arose from the min-max. Thus,
the desired property must hold for all hypersurfaces produced by the
min-max procedure.

We first emphasise that the paths we construct in W 1,2(N) reflect
the underlying geometry imposed by the assumption of positive Ricci
curvature. We denote the super-level sets and level sets of the signed
distance function, for each s ∈ R, by

E(s) = {x ∈ N | d±
M

(x) > s} and Γ(s) = {x ∈ N | d±
M

(x) = s},

respectively; so that E(0) = E and Γ(0) = M . Formally computing we
have, for almost every s ∈ R, that


d
ds

Hn(Γ(s)) = −
∫

Γ(s) H(x, s) dHn(x)
d
ds

Volg(E(s)) = Hn(Γ(s))
, (2.6)

where here H(x, s) denotes the mean curvature of the level set Γ(s) at
a point x ∈ N . By denoting m = minN Ricg > 0, the assumption of
positive Ricci curvature implies the following relation between the mean
curvature of M and the level sets Γ(s):


H(x, s) ≥ λ+ms for s > 0

H(x, 0) = λ

H(x, s) ≤ λ+ms for s < 0

, (2.7)

for further explanation see Subsection 2.3.2. Therefore, by (2.6) and
(2.7), for each t ∈ R \ {0} we compute that

Fλ(E(t)) − Fλ(E) =
∫ t

0

d

ds
Hn(Γ(s)) − λ

d

ds
Volg(E(s)) ds

=
∫ t

0

∫
Γ(s)

λ−H(x, s) dHn(x) ds < 0.

From the assumption of positive Ricci curvature we thus conclude that
for each t ∈ R \ {0} we have

Fλ(E(t)) < Fλ(E). (2.8)

We then replicate this geometric behaviour of the super-level sets at
the diffuse level by considering the continuous path of sliding functions,
vt

ε ∈ W 1,2(N), produced by sliding the zero level set of vε from M to Γ(t)
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for each t ∈ R; that is we define

vt
ε = Hε ◦ (d±

M
− t),

which satisfy the following properties for each t ∈ R (whenever ε > 0 is
sufficiently small with respect to the diameter, d(N))



{vt
ε = 0} = Γ(t)

v0
ε = vε on N

v2d(N)
ε = −1 on N

v−2d(N)
ε = +1 on N

.

The geometric relation (2.8), induced by the positive Ricci curvature
assumption, then translates to the level of functions and allows us to
compute, in Subsection 2.5.4, that the vt

ε have the following ε → 0 energy
property:

Fε,λ(vt
ε) ≤ Fλ(vε) + E(ε) where E(ε) → 0 as ε → 0.

As the nodal sets of the functions vt
ε are precisely the level sets of the

signed distance function to M , the functions vt
ε may be directly inter-

preted as a path of functions analogous to a sweep-out of N by the level
sets of the signed distance function to M .

Thus, by concatenating the path of the sliding functions vt
ε ∈ W 1,2(N)

with the energy reducing paths from −1 and +1 provided by negative
gradient flow of the energy to aε and bε respectively, provides a “recovery
path” for the value Fλ(E); this path connects aε to bε, passing through
vε, with the maximum value of the energy along this path approximately
Fλ(E) (by virtue of (2.2)); approximate upper energy bounds along this
path are depicted by the thick dashed lines in Figure 2.1. In this man-
ner, as mentioned in Subsection 2.1.2, such a path establishes that the
Allen–Cahn min-max procedure in positive Ricci curvature produces no
minimal piece. Furthermore, in combination with (2.2) it guarantees that
(2.1) holds for the min-max critical points of the energy introduced in
Subsection 2.1.2.

We now exhibit (for all ε > 0 sufficiently small) a continuous path in
W 1,2(N) between aε and bε which, under the assumption that E is not
Fλ-minimising a small ball around an isolated singularity, contradicts the
min-max characterisation of E and proves Theorem 2.3. We emphasise
that this path is constructed with energy bounded above by a value
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strictly below Fε,λ(vε) (independently of ε); approximate upper energy
bounds along the path constructed are depicted by the solid curve in
Figure 2.1. We thus conclude, by the arguments in Step 1, that the
Allen–Cahn min-max procedure in positive Ricci curvature produces a
hypersurface which is locally Fλ-minimising.

Fε,λ(vε)

aε bε

Fε,λ(vε) − η
2

vt0
ε

Fε,λ(vε) − η

gε v−t0
εvt0,0

ε v−t0,0
ε

Fε,λ(vε) − τ

Fε,λ(vε) − η − τ

gt0,2
ε g−t0,2

ε

Figure 2.1: The solid curve depicts approximate (i.e. up to
the addition of an error term that converges to zero as ε → 0)
upper energy bounds along the path taken from aε to bε con-
structed for the proof of Theorem 2.3 in Subsection 2.6.1. The
horizontal axis identifies some specific functions in the path
and the vertical axis depicts the approximate upper bound on
the energy of the path between each identified function. The
thick dashed lines depict an approximate upper energy bound
along the path of functions in Lemma 2.5.

We will now sketch the various path constructions and motivate the
upper energy bounds as a diffuse reflection of the underlying geometry.
The explicit constructions of the portions of the path along with com-
putations for their approximate upper energy bounds are carried out in
full in Section 2.5.

Firstly, for a given isolated singularity, p ∈ Sing(M), we are able to
continuously deform the super-level set E(t0) (for a fixed t0 > 0 suffi-
ciently small) locally around p so that the resulting deformation agrees
with E inside of a fixed ball Br0(p) (for some r0 > 0 determined only by
the area of M). This is done by exploiting (2.8) in such a way that the
Fλ-energy of the deformations remain a fixed amount below Fλ(E). At
the diffuse level this is replicated by placing Hε in the normal direction to
the deformations as in the construction of vε, producing a W 1,2(N) con-
tinuous path of functions with controlled energy; as depicted in Figure
2.2.

Specifically, we produce a continuous path of shifted functions,

s ∈ [0, 1] → vt0,s
ε ∈ W 1,2(N),

69 of 151



2.1. Introduction 2. Generic regularity via min-max

which satisfy the following properties
v

t0,1
ε = vt0

ε on N

vt0,0
ε = vε in Br0(p)

.

Furthermore, there exists a fixed η > 0 such that for each s ∈ [0, 1] we
have the following upper energy bound

Fε,λ(vt0,s
ε ) ≤ Fε,λ(vε) − η,

as depicted in Figure 2.1. In this manner we have exhibited a continuous
path in W 1,2(N) from the sliding function vt0

ε to a function vt0,0
ε , which

is equal to vε in a fixed ball Br0(p), and with the energy along this path
a fixed amount below the min-max value.

vε
Figure 2.2: In both graphics above the lower thin dashed
horizontal line depicts M , the zero level set of the function
vε, and the upper thick dashed horizontal line depicts the
zero level set, Γ(t0), of vt0

ε = vt0,1
ε which is deformed in the

construction of the shifted functions. In the left-hand graphic
the solid lines depict various zero level sets of the vt0,s

ε as we
vary s from 0 to 1. In the right-hand graphic the solid line
depicts the zero level set of vt0,0

ε and the thick dashed circle
depicts the boundary of the ball, Br0(p), in which vt0,0

ε = vε.

Next we construct a continuous path of functions, from vε to the local
energy minimiser gε ∈ Aε, R

2
(p) (recall Step 1) for a fixed R ∈ (0, r0).

This is done in such a way that we only alter the functions inside BR(p)
(where it holds that vt0,0

ε = vε); thus, in the following description we
will only consider functions in the ball BR(p). The radius R > 0 here is
chosen sufficiently small based on the energy drop, η > 0, above achieved
outside of Br0(p), ensuring that the energy along the constructed path
will remain a fixed amount below the min-max value.

In order to explicitly construct this local path, from vε to gε inside of
BR(p), we utilise a sweep-out of the ball by images of Euclidean planes via
a geodesic normal coordinate chart; depicted by the thin dashed curves
in Figure 2.3. The hypersurfaces in this sweep-out are used to continu-
ously transition from our constant mean curvature hypersurface and the
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Figure 2.3: The graphics above depict various stages of
the transition, in W 1,2(N), between vε and min{vε, gε} in-
side BR(p). The first row depicts schematics of this transition
and the second row depicts the geometry of the zero level sets
of the local path functions; in this way, each column of the
figure contains a schematic for the local path function with a
corresponding depiction of the geometry of its zero level set
below it. Further explanation of this construction is provided
in Remark 2.5.

local Fλ-minimiser at the diffuse level; precisely, the planes facilitate the
construction of a path between the diffuse representatives vε and gε.

Remark 2.4. In the setting of the Almgren–Pitts min-max one considers
homotopy sweep-outs of N by cycles, as opposed to continuous paths in
the Sobolev space W 1,2(N) in the Allen–Cahn min-max. However, there
does not necessarily exist a homotopy of cycles between our hypersurface
and any local Fλ-minimiser; for instance there exists no homotopy of
cycles between a catenoidal neck and the union of two sufficiently close
disks sharing a common boundary (provided by the two circles bounding
the disks). We overcome this for the Allen–Cahn min-max by directly
exploiting the topology of W 1,2(N), showing that the local path may be
seen as a diffuse analogue of [CLS22, Lemma 1.12], and illustrating why
we guarantee local Fλ-minimisation (see Remark 2.3).

In the same manner as in the construction of vε, by placing Hε in
the normal direction to the hypersurfaces in this “planar” sweep-out we
construct a sweep-out at the diffuse level that is continuous in W 1,2(N);
the diffuse sweep-out thus acts as an approximation for the underlying
“planar” sweep-out. This diffuse sweep-out of BR(p) is utilised twice, first
for the construction of a path from vε to min{gε, vε}, and second for the
construction of a path from min{gε, vε} to gε. By taking a combination
of maxima and minima of functions in the diffuse sweep-out, vε and gε,
(which ensure the resulting functions are in W 1,2(N)) we are able to
produce a local path from vε to gε; see Figure 2.3 for a depiction of this
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construction and Remark 2.5 below for further explanation of the portion
of the local path between vε and min{vε, gε} in BR(p).

Remark 2.5. We now explain in more detail the construction of the path
transitioning between vε and min{vε, gε} as depicted by Figure 2.3: For
the first row, in all three of the images the solid black line depicts the
local path function in question (equal to vε and min{vε, gε} in the left-
hand and right-hand graphic respectively), the thick dashed curve depicts
portions of min{vε, gε} that are not yet included in the path, the thin
dashed curve depicts the diffuse sweep-out function in question, and the
thick dashed upper and lower horizontal lines depict the functions ±1
respectively. Notice that the local path function depicted in the middle
graphic includes portions of vε that lie to the right of the diffuse sweep-out
function, portions of min{vε, gε} that lie to the left of the diffuse sweep-
out function and uses the diffuse sweep-out function itself to interpolate
between vε and min{vε, gε}. The explicit construction of the local path
functions replicating the behaviour of these schematics involves taking
various maxima and minima of the functions in the diffuse sweep-out,
vε and gε; the diffuse sweep-out allows for this choice of maxima and
minima (corresponding geometrically to a choice of zero level set) to be
made continuously.

For the second row, in all three graphics the outer solid circle de-
picts the boundary of BR(p) and the thick dashed inner circle depicts the
boundary of BR

2
(p). In the left-hand graphic the solid line depicts the

zero level set of vε, which is M , in the right-hand graphic the solid curve
depicts the zero level set of min{gε, vε}, and in the middle graphic the
solid curve depicts the zero level set of a local path function in the tran-
sition between vε and min{vε, gε}. The thin dashed curves in the three
graphics depict a given hypersurface in the “planar” sweep-out of BR(p),
each separating BR(p) into two open sets (one above and one below it).
The zero level set of the function in the local path associated to this hy-
persurface is chosen to be the portions of the zero level set of min{vε, gε}
that are beneath the hypersurface, the portions of M that are above the
hypersurface, and when the the hypersurface lies between the nodal sets
of vε and min{vε, gε}, the hypersurface itself is chosen as the zero level
set.

Similar ideas as described in Remark 2.5 above are used for the con-
struction of the remainder of the path from vε to gε in BR(p). Here
instead one reverses the direction of the “planar” sweep-out and takes
similar maxima and minima of W 1,2(N) functions in order to construct
the portion of the continuous path transitioning from min{vε, gε} to gε.
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We note that Fε,λ(gε) ≤ Fε,λ(min{vε, gε}) ≤ Fε,λ(vε) (by local energy
minimisation of gε) and that R ∈ (0, r0) is chosen based on η > 0 to en-
sure that the total energy contribution of the diffuse sweep-out functions
in the ball is at most η

2 . As a consequence of these two facts, the energy
in BR(p) of any local path function can be estimated to be at most the
energy of vε in BR(p) plus η

2 ; from there one obtains the energy estimate
in the whole of N .

Specifically, we produce a continuous path of local functions,

s ∈ [−2, 2] → gt0,s
ε ∈ W 1,2(N),

which satisfy the following properties for all s ∈ [−2, 2]


gt0,−2

ε = vt0,0
ε on N

gt0,s = vt0,s in N \BR(p)

gt0,2 = gε in BR(p)

.

Furthermore, for each s ∈ [−2, 2] we have the following upper energy
bound

Fε,λ(gt0,s
ε ) ≤ Fε,λ(vε) − η

2 ,

as depicted in Figure 2.1. In this manner we have exhibited a continuous
path in W 1,2(N) from vt0,0

ε to a function gt0,2
ε , changing vt0,0

ε only inside
of BR(p) (from vε to the local energy minimiser gε).

In order to establish that E is locally Fλ-minimising, we now argue
by contradiction and assume that there exists a τ > 0 such that

Fε,λ(vε) ≥ Fε,λ(gε) + τ for all ε > 0 sufficiently small. (2.9)

Note that by the results discussed in Step 1, contradicting (2.9) will
establish that M is Fλ-minimising in BR

4
(p) for R > 0 as chosen above (as

(2.5) must then hold). Using the contradiction assumption, in addition
to keeping the energy of the local path functions a fixed amount, η

2 , below
the min-max value, as gt0,2

ε = gε in BR(p) we thus also have that

Fε,λ(gt0,2
ε ) ≤ Fε,λ(vε) − η − τ,

as depicted in Figure 2.1. We now directly exploit this extra energy drop
afforded by the contradiction assumption in order to construct the next
portion of the path.

To this end, we deform the rest of the super-level set E(t0) entirely
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gε gε
Figure 2.4: In both graphics above the lower horizontal lines
depict M , the upper horizontal lines depict the zero level set,
Γ(t0), of vt0

ε = vt0,1
ε which is deformed in the construction of

the shifted functions and the thick dashed circle depicts the
boundary of the ball, Br0(p), in which the shifted functions
are such that gt,2

ε = gε. In the left-hand graphic the solid lines
depict various zero level sets of the gt,2

ε as we vary t from t0
to 0. In the right-hand graphic the solid line depicts the zero
level set of g0,2

ε = gε.

onto E outside of Br0(p). This is done in such a way that the deforma-
tions fix the inside of Br0(p), thus preserving a drop in Fλ-energy under
the assumption that E is not locally Fλ-minimising. At the diffuse level
this is replicated by placing Hε in the normal direction to these deforma-
tions, keeping the functions equal to the local energy minimiser gε (which
yields an energy drop by assumption (2.9)) inside of Br0(p) and produc-
ing a W 1,2(N) continuous path of functions with controlled energy; this
is depicted in Figure 2.4.

Specifically, we produce (under the assumption that (2.9) holds) a
continuous path of shifted functions,

t ∈ [0, t0] → gt,2
ε ∈ W 1,2(N),

which are equal to the local function gt0,2
ε when t = t0 (justifying nota-

tion), and satisfy the following properties for all t ∈ [0, t0]g
0,2
ε = gε on N

gt,2
ε = gε in Br0(p)

.

Furthermore, for each t ∈ [0, t0] have the following upper energy bound

Fε,λ(gt,2
ε ) ≤ Fε,λ(vt,0

ε ) − τ,

as depicted in Figure 2.1. In this manner we have exhibited a continuous
path in W 1,2(N) from gt0,2

ε to the local energy minimiser gε, only changing
gt0,2

ε outside of Br0(p).

To summarise all of the above, as the endpoints of each of the paths
described agree with the start of the next, for all ε > 0 sufficiently small,
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we have exhibited a continuous paths in W 1,2(N) connecting the stable
critical point aε to the local energy minimiser gε. We also demonstrated
that the energy along this path is bounded above by a value strictly
below Fε,λ(vε) (independently of ε), as depicted in Figure 2.1.

To complete the desired path between the stable critical points aε and
bε it remains to construct the portion from the local energy minimiser gε

to the stable critical point bε. By considering −t0 instead of t0 in each
of the paths sketched above, we ensure that through symmetric (with
respect to the underlying hypersurfaces) deformations of the super-level
set E(−t0), the relevant symmetric portions of the path may constructed
with identical upper energy bounds; this portion of the path is depicted
in Figure 2.1, where the symmetry of the path with respect to gε is made
apparent.

To conclude the proof of Theorem 2.3 we then concatenate the path
from aε to gε and the path from gε to bε, completing the desired contin-
uous path in W 1,2(N) between the two stable critical points aε and bε.
Under the assumption that (2.9) holds, the upper energy bounds along
this path (as depicted by the solid curve in Figure 2.1) and (2.2) ensure
that for ε > 0 sufficiently small we have that the

Fε,λ energy along the path ≤ Fλ(E) − min
{
η

4 ,
τ

2

}
.

As (2.1) holds, as mentioned in Subsection 2.1.2, and as the above path is
admissible in the Allen–Cahn min-max construction of E, we must con-
tradict the assumption that (2.9) holds. We thus conclude that (as (2.5)
holds) any such E as produced by the Allen–Cahn min-max procedure
in Ricci positive curvature must be such that E is locally Fλ-minimising
(in particular in BR

4
(p) for the choice of R > 0 above), proving Theorem

2.3. We are then able to establish Theorems 2.1 and 2.2 by applying the
surgery procedure described in Step 3.

3. Surgery procedure: As mentioned in Section 2.1, a local foliation
around a hypersurface provides a natural way to perturb away an isolated
singularity via a surgery procedure. Using the work of [HS85], in both
[Sma93] and [CLS22], isolated singularities with regular tangent cone to
locally area-minimising hypersurfaces are perturbed away by combining
a “cut-and-paste” gluing along with a conformal change of metric.

We take a similar approach here. In [Les23] it is shown that near an
isolated singularity with regular tangent cone of a locally Fλ-minimising
hypersurface of constant mean curvature λ there is a foliation around this

75 of 151



2.1. Introduction 2. Generic regularity via min-max

Figure 2.5: In both graphics the innermost two thinly dot-
ted curves depict an annulus around an isolated singularity of
a constant mean curvature hypersurface, and the outermost
thinly dotted curves depict the boundary of the ball in which
the foliations will be defined. In the left-hand graphic the
lower solid curve depicts an isolated singularity with regular
tangent cone of a constant mean curvature hypersurface and
the upper solid curve depicts, under the assumption that the
lower singular hypersurface is locally Fλ-minimising, a smooth
constant mean curvature hypersurface in the one-sided folia-
tion provided by [Les23]. The solid curve in the right-hand
graphic depicts the smooth hypersurface constructed by glu-
ing both of the hypersurfaces in the left-hand graphic. This
gluing is done in such a way that the hypersurface outside
of the larger ball in the annulus agrees with the singular one
and inside of the smaller ball in the annulus agrees with the
hypersurface provided by the foliation; with the thick dashed
lines depicting the pieces of the hypersurfaces in the left-hand
graphic not included in the construction in the right. The
resulting construction in the right-hand graphic is then, after
a suitable metric perturbation, the desired smooth constant
mean curvature hypersurface.

hypersurface (to either side) by smooth hypersurfaces of constant mean
curvature λ. In Section 2.2, using this foliation, we establish a surgery
procedure to perturb away isolated singularities with regular tangent
cone of locally Fλ-minimising constant mean curvature hypersurfaces.
This is achieved by first constructing, via a “cut-and-paste” gluing, a
smooth hypersurface close in Hausdorff distance to the original one inside
a chosen ball (which may be taken arbitrarily small). This new smooth
hypersurface has mean curvature equal to λ outside of an annulus in
which the original hypersurface smooth; this construction is depicted
and described in Figure 2.5.

It then remains to perturb the metric inside of this annulus so that
the newly constructed hypersurface has constant mean curvature λ ev-
erywhere. This is achieved by an appropriate choice of function for con-
formal change of the original metric; with the resulting metric arbitrarily
close, in the Ck,α-norm, to the original. The result is then a smooth hy-
persurface of constant mean curvature λ with respect to the new metric,
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agreeing with the original hypersurface outside of the chosen ball.

2.1.4 Chapter structure and remarks

The remainder of chapter now proceeds as follows:

• Section 2.2 recalls the local foliation result of [Les23] and uses it to
perturb away isolated singularities of constant mean curvature hy-
persurfaces with regular tangent cone. Here we also gather various
remarks and provide an immediate application of the procedure to
isoperimetric regions in dimension 8.

• Section 2.3 analyses the signed distance function and introduces
the one-dimensional profile, before showing that it approximates
the underlying hypersurface in a suitable sense. We also record
some comments on the minimal (λ = 0) case of the approximation.

• Section 2.4 establishes a procedure to locally smooth Caccioppoli
sets which are a priori assumed to be smooth in annular regions.
This procedure is then used to relate local energy minimisation to
the local geometric behaviour of the hypersurface by the construc-
tion of “recovery functions” for local Fλ-minimisers around isolated
singularities.

• Section 2.5 provides constructions of the various continuous paths
in W 1,2(N) along with calculations of upper bounds of the energy
along these paths, as depicted in Figure 2.1.

• Section 2.6 ties together the results of the previous sections in order
to prove Theorems 2.1, 2.2 and 2.3.

• Appendix 2.A concludes the chapter by providing alternative ar-
guments in the minimal case (i.e. when λ = 0). In particular, we
exhibit simplified computations of the upper energy bounds in Sec-
tion 2.5 that provide a more direct route to establishing the main
results in this case.

The reader is encouraged to keep in mind the following remarks through-
out this chapter, which will be used implicitly in the sections that follow:

Remark 2.6. As mentioned above, in [BW20b, Proposition B.1] it is
shown that smooth constant mean curvature hypersurfaces are locally Fλ-
minimising. In proving Theorem 2.3 we aim to show that this also holds
around isolated singularities for constant mean curvature hypersurfaces
produced by the Allen–Cahn min-max in manifolds with positive Ricci
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curvature. We thus restrict to the dimensions in which these objects may
be singular and therefore may work under the assumptions that N is of
dimension n+ 1 ≥ 8 and λ ≥ 0 throughout the chapter.

Remark 2.7. The assumption of positive Ricci curvature is used only to
ensure that the upper energy bounds on the paths constructed in Section
2.5 remain a fixed amount below the min-max value, Fλ(E). In partic-
ular, we note that the results of Sections 2.2, 2.3 and 2.4 as well as the
paths constructed (but not their upper energy bounds) in Section 2.5 make
no use of the assumption of positive Ricci curvature.

Remark 2.8. We make the choice of a positive upper bound on ε > 0
finitely many times throughout the construction of the paths in the proof
of Theorem 2.3, ultimately constructing the paths for all ε > 0 smaller
than a fixed positive constant. The specific choice of upper bound utilised
in each instance may change, but we implicitly assume that a correct
upper bound for which the desired property holds is used in each case.
This remark will apply each time we choose ε > 0 sufficiently small.

2.2 Surgery procedures

In this section we develop the surgery procedure described in Step 3
of Subsection 2.1.3, allowing for isolated singularities with regular tan-
gent cone of constant mean curvature hypersurfaces that are locally Fλ-
minimising to be perturbed away. As an immediate application, we par-
tially answer an open question of Lawson and obtain our first generic
regularity result by smoothing boundaries of isoperimetric regions in di-
mension 8.

2.2.1 Perturbing isolated singularities

We show how the recent result of [Les23] can be combined with a local
perturbation of the metric to regularise a hypersurface of constant mean
curvature around an isolated singularity with area-minimising regular
tangent cone. We first collect some notation and definitions, phrased in
notation in keeping with this chapter, before stating the main theorem
from [Les23] and using it to establish the surgery procedure.

We reset notation for this section, letting (Nn+1, g) be a Riemannian
manifold with no curvature assumption. Throughout this section

T = (∂[A])xB1(p)
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will denote the n-current associated to a Caccioppoli set, A ∈ C(N),
restricted to a ball B1(p) about a point p ∈ N , for which the following
properties hold:

• Spt(T ) is connected.

• Sing(T ) = {p} (so that p is an isolated singularity of T ).

• T has a regular tangent cone at p.

For a given λ ∈ R we fix a choice of 0 < r1 < r2 < 1 sufficiently small so
that the following properties hold:

• Γ0 = ∂(TxBr1(p)) is a closed, embedded, connected, (n − 1)-
dimensional submanifold of ∂Br1(p).

• Spt(T ) ∩ ∂Br1(p) is a transverse intersection.

• A ∩Br2(p) has connected complement in Br2(p).

Let φj : Γ0 → ∂Br1(p) denote C2 maps with

|φj − iΓ0 |C2 ≤ 1
j
,

and for Γj = (φj)∗Γ0 we assume that Γj ∩ Ao 6= ∅. Here we denote by
iΓ0 the identity map on Γ0, (φj)∗Γ0 the push-forward of Γ0 by the map
φj and Ao the interior of A. We now recall a definition used in [Les23].

Definition 2.2. For λ ∈ R we say that T = (∂[A])xB1(p) is one-sided
minimising for Fλ in B1(p) if both of the following properties hold:

• A is a critical point of Fλ in B1(p).

• We have that
Fλ(A) ≤ Fλ(X).

for any X ∈ C(N) with X∆A ⊂ A ∩B1(p) and ∂(∂[X]xB1(p)) =
∂T (as currents).

Remark 2.9. Note that this definition agrees with that of one-sided min-
imisation as introduced in [Les23], which involves an enclosed volume
term, by interpreting the Caccioppoli sets as multiplicity one integral cur-
rents restricted to B1(p).

Using the above notation and definition, [Les23] then proves the fol-
lowing local foliation result, generalising the results of [HS85] (in partic-
ular its one-sided extension due to [Liu19]) to the case of constant mean
curvature hypersurfaces.
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Theorem 2.4. [Les23] Let λ ∈ R, with T as defined above such that
in addition T is one-sided minimising for Fλ in B1(p). Then, for every
j ≥ 1, there exist n-currents, Sj, that minimise Fλ in A ∩Br2(p), subject
to the boundary condition ∂Sj = Γj, that satisfy the following properties:

• Spt(Sj) ⊂ Br1(p).

• There exist sets of finite perimeter Bj, with Bj ⊂ A ∩Br1(p), such
that Sj = ∂[Bj]xBr1(p).

• Γj = Spt(Sj) ∩ ∂Br1(p).

• Each Sj is a critical point of Fλ in Br1(p).

• For the measures associated to the supports of the Sj and T we
have µSj

→ µTxBr1 (p). Thus, in particular on compact sets we have
that Spt(Sj) → Spt(T ) in the Hausdorff distance.

• The Spt(Sj) are smooth hypersurfaces.

Using Theorem 2.4 we now establish the desired surgery procedure,
the proof of which is similar to [CLS22, Proposition 4.1].

Proposition 2.1. Let (Nn+1, g) be a Riemannian manifold and, associ-
ated to A ∈ C(N), let T = (∂[A])xB1(p) be an n-current with the both
properties as stated above and satisfying the hypotheses of Theorem 2.4.
Given r ∈ (0, r1), k ≥ 1, α ∈ (0, 1) and any ε > 0 there exists a current
T̃ and metric g̃ with the following properties:

• Sing(T̃ ) = ∅.

• T̃ is a critical point of Fλ in B1(p) with respect to the metric g̃.

• Spt(T̃ ) \Br(p) = Spt(T ) \Br(p) and ∂(T̃xBr(p)) = ∂(TxBr(p)).

• dH(Spt(T ), Spt(T̃ )) < ε, where here dH denotes the Hausdorff dis-
tance.

• ||g̃ − g||Ck,α < ε with g = g̃ outside of Br(p).

Proof. The case λ = 0 is precisely the content of [CLS22, Proposition
4.1]. We may thus consider the case λ ∈ R \ {0}.

As Sing(T ) = {p}, for each r ∈ (0, r1) we have that

(Spt(T ) ∩Br(p)) \ {p}

is smooth. We apply Theorem 2.4 to see that there exists some sequence,
Sj, of smooth constant mean curvature hypersurfaces such that the Sj
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converge as currents to TxBr(p). Allard’s Theorem, (see [Sim84, Chapter
5] and [HS85, Lemma 1.14]) implies that we may write (for j sufficiently
large) the intersection of the supports, Spt(Sj), with the annulus

A
(
p,
r

4 ,
3r
4

)
= B 3r

4
(p) \B r

4
(p)

as a smooth graph over Spt(T ) ∩ A(p, r
4 ,

3r
4 ).

Explicitly, we let uj ∈ C2(Spt(T ) ∩ A(p, r
4 ,

3r
4 )) denote the graphing

function of Spt(Sj) over Spt(T ) ∩ A(p, r
4 ,

3r
4 ). Define ϕ to be a smooth

cutoff function taking values in [0, 1] such that ϕ = 1 on B 3r
8

(p) and
ϕ = 0 outside B 5r

8
(p). We then denote by T + ϕuj the image of the

normal graph of the function ϕuj over Spt(T ) ∩ A(p, r
4 ,

3r
4 ).

We now define

T̃ = (T \Br(p)) ∪ (Sj ∩B r
4
) ∪

(
(T + ϕuj) ∩ A

(
p,
r

4 ,
3r
4

))

for j large enough to ensure that Spt(Sj) is smooth and graphical as
above. Notice that Spt(T̃ ) is smooth as Spt(Sj), Spt(T ) \ Br(p) and
(Spt(T ) + ϕuj) ∩ A(p, r

4 ,
3r
4 ) are smooth; hence Sing(T̃ ) = ∅. By con-

struction we ensure thatSpt(T̃ ) \Br(p) = Spt(T ) \Br(p)

∂(T̃xBr(p)) = ∂(TxBr(p))
.

Note that for j sufficiently large we also ensure that we have

dH(Spt(T ), Spt(T̃ )) < ε

by the properties in the conclusion of Theorem 2.4.

Let Hg(x) denote the mean curvature of the hypersurface T̃ at a
point x ∈ T̃ with respect to the metric g. By construction, we note
that Hg may not be equal to λ only on A(p, r

4 ,
3r
4 ) (as both T and Sj are

critical points of Fλ). Moreover, as the graphing functions, uj, smoothly
converge to 0 (which in particular implies that T̃ smoothly converges to
T in A(p, r

4 ,
3r
4 )), for each x ∈ T̃ we have that

||Hg(x) − λ||C2,α → 0 as j → ∞, (2.10)

Thus, we may choose j large enough to ensure that Hg and λ have the
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same sign (using the assumption that λ ∈ R \ {0}), so that

Hg(x)
λ

> 0 (2.11)

for each x ∈ Spt(T̃ ). It remains to construct a new metric g̃, with Ck,α

norm close to g, and show that T̃ has constant mean curvature λ with
respect to this new metric.

For some smooth function f on N to be determined we perform a
conformal change of metric and set g̃ = e2fg. By standard results for
conformal change of metric (e.g. see [Sak96, Chapter 2]) we then have
that the mean curvature, Hg̃, of T̃ with respect to the metric g̃ satisfies

Hg̃(x) = e−f

(
Hg(x) + ∂f

∂ν

)

at each point x ∈ T̃ , where here ν is the unit normal on T̃ (agreeing with
T outside of A(p, r

4 ,
3r
4 )).

We define a smooth cutoff function, z, such that z(x) ≡ 1 if

distN

(
y, Spt(T̃ ) ∩ A

(
p,
r

4 ,
3r
4

))
<

r

20

and z ≡ 0 whenever

distN

(
y, Spt(T̃ ) ∩ A

(
p,
r

4 ,
3r
4

))
>

r

10 .

We denote by Π(y) the closest point projection of a point y to T̃ in a
tubular neighbourhood of

Spt(T̃ ) ∩ A
(
p,
r

4 ,
3r
4

)
,

so that Hg(Π(y)) is a well defined smooth function in this region. We
now solve for Hg̃(x) = λ for each x ∈ Spt(T̃ ) by setting

f(y) = log
(
Hg(Π(y))

λ

)
z(y)

for each y ∈ N ; this is well defined by (2.11) and the choice of tubu-
lar neighbourhood above. Note then by construction that the following
properties hold

Spt(f) ⊂ A(p, r
4 ,

3r
4 )

∂f
∂ν

= 0 on Spt(T̃ ) ∩ A(p, r
4 ,

3r
4 )

,
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where the second property follows as f is constant along normal geodesics
to this region.

Thus we have that Hg̃(T̃ ) = λ for the choice of f as above. In
particular, T̃ is a critical point of Fλ, with the conformal change in
metric, g̃ = e2fg, occurring only in A(p, r

4 ,
3r
4 ). Furthermore, by (2.10)

we ensure that for each y in the tubular neighbourhood as chosen above
we have that

||Hg(Π(y)) − λ||C2,α → 0 as j → ∞.

Therefore, for each k ≥ 1 and α ∈ (0, 1) we ensure by the smoothness of
z that

||e2f − 1||Ck,α =
∣∣∣∣∣
∣∣∣∣∣
(
Hg(Π(y))

λ

)2z(y)

− 1
∣∣∣∣∣
∣∣∣∣∣
Ck,α

→ 0 as j → ∞,

and so we guarantee that

||g̃ − g||Ck,α ≤ ||e2f − 1||Ck,α ||g||Ck,α → 0 as j → ∞.

Hence, by choosing j sufficiently large we ensure the metric change is
smaller than ε > 0 in the Ck,α norm for the given values of k ≥ 1 and
α ∈ (0, 1).

2.2.2 Applications

We now record two effective applications of the surgery procedure:

1. For Theorems 2.1 and 2.2: A direct application of Proposition
2.1 is utilised in the proofs of Theorems 2.1 and 2.2 after establishing
Theorem 2.3; this application is justified by the following remark.

Remark 2.10. In the proof of Theorem 2.3 we will establish that the
one-parameter Allen–Cahn min-max procedure of [BW20a] with constant
prescribing function λ, in a compact Riemannian manifold of dimension 3
or higher with Ricci positive curvature, produces a closed embedded hyper-
surface, M , of constant mean curvature λ which is locally Fλ-minimising
around isolated singular points. For M as above, around isolated singu-
larities with regular tangent cone, the results of [Sim83] imply that M is
locally a graph over its unique tangent cone. Thus, M will satisfy all the
required properties of T specified throughout this section in a sufficiently
small ball around an isolated singular point with regular tangent cone.
With this in hand, as any one-sided minimiser as in Definition 2.2 is
required to be a Caccioppoli set (see [Liu19], [Les23] for more details),
we may thus apply the results of Proposition 2.1 to M .
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2. On an open question of Lawson: In the second paragraph of
[Bro86, Problem 5.7.], the following open question was proposed:

“Let Ω be a compact domain in a Riemannian manifold such that ∂Ω
is of minimal area for the constrained volume. Can ∂Ω be approximated
by a smooth hypersurface of positive mean curvature?” - B. Lawson

In the following discussion we show how Proposition 2.1 may be ap-
plied in order to answer this question affirmatively in the case that the
boundary is assumed have non-zero mean curvature and contain only iso-
lated singularities with regular tangent cone; this fully answers the above
question in dimension 8 when ∂Ω is assumed to have non-zero mean cur-
vature. In particular, the approximating hypersurfaces may be taken to
have mean curvature with the same sign as the original boundary.

We consider a compact Riemannian manifold (Nn+1, g) with no cur-
vature assumption, and re-normalise its volume (by re-scaling the met-
ric g) so that Volg(N) = 1. We then fix a proportion of the volume,
θ ∈ (0, 1), and minimise boundary area amongst all Caccioppoli sets
with enclosed volume equal to θ. In doing so we produce an isoperimet-
ric region, F ∈ C(N), such that

Perg(F ) = inf
G∈C(N)

{Perg(G) | Volg(G) = θ}.

The existence of such an isoperimetric region arising as a solution to
the above variational problem is guaranteed by standard arguments (see
e.g. [Mag12, Section 12.5]). It holds that boundaries of isoperimetric
regions are constant mean curvature hypersurfaces which in particular
are locally Fλ-minimising (for further explanation, see the discussion at
the beginning of [BW20b, Section 1.1]).

The regularity theory developed in [GMT83] (or the more general
results in [BW20b, BW20c]) guarantee that the boundary, ∂F , of any
isoperimetric region F ∈ C(N) is in fact a smoothly embedded constant
mean curvature hypersurface away from a closed singular set of Hausdorff
dimension at most n − 7. In particular, when n = 7 the singular set
consists of finitely many isolated singularities, each of which have regular
tangent cone. Because the set of isolated singular points with regular
tangent cone of the boundary must be discrete, but not necessarily closed
when n ≥ 8, it will suffice for repeated application of the construction in
Proposition 2.1 to index the isolated singularities with regular tangent
cone and make a small change to the underlying hypersurface around each
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point so that the Hausdorff distance of the resulting smooth construction
is arbitrarily small.

We may then directly apply the “cut-and-paste” construction in the
proof of Proposition 2.1 around each isolated singularity with regular tan-
gent cone arising in the boundary of an isoperimetric region. This results
in a constant mean curvature hypersurface (with constant equal to the
mean curvature of ∂F ) containing no isolated singularities with regular
tangent cone that approximates the boundary of the isoperimetric re-
gion in Hausdorff distance. In particular, when n = 7 the approximating
constant mean curvature hypersurfaces are entirely smooth. Further-
more, when ∂F is assumed to have non-zero constant mean curvature,
the above smooth approximating hypersurfaces provide an affirmative
answer to the open question above.

2.3 Signed distance and approximation

In this section we analyse the distance function to our hypersurface of
constant mean curvature and use this in order to produce a suitable
approximating function for the underlying hypersurface. By first estab-
lishing properties about the singular set of the distance function (points
where it fails to be differentiable) we are able to control the behaviour of
its level sets. This control is exploited in to construct a suitable (in the
sense that (2.2) in Step 1 holds) approximating function, vε ∈ W 1,2(N),
for our underlying constant mean curvature hypersurface, around which
the paths described in Step 2 of the proof strategy outlined Subsection
2.1.3 are ultimately constructed in Section 2.5.

2.3.1 Singular behaviour of the distance function

Recall that M = ∂∗E ⊂ N is assumed to be a closed embedded hypersur-
face of constant mean curvature λ, smooth away from a closed singular
set, denoted Sing(M) = M \ M , of Hausdorff dimension at most n − 7.
We now adapt some of the analysis in [Bel23b, Section 3] to the setting
of hypersurfaces of constant mean curvature.

Denoting by Sd
M

the set of points inN\M where the distance function
dM fails to be differentiable (precisely, the set of points x ∈ N \M such
that there exist two or more geodesics realising dM(x)), we then have that
dM is C1 on N \ (M ∪ Sd

M
) and that Sd

M
is countably n-rectifiable, by

the results of [Alb94]. We now show that Sd
M

is a countably n-rectifiable
set; this fact will allow us to work solely with the smooth portions of
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the signed level sets of dM . To establish this we will need the following
lemma; the proof of which is identical to that of [Bel23b, Lemma 3.1]
(c.f. [Gro79],[Zho17]) interchanging the use of the sheeting theorem in
[SS81] (or the more general version in [Wic14a]) for the one in [BW20c].

Lemma 2.1. (Geodesic Touching) Let x ∈ N \M , then any minimising
geodesic connecting x to M (i.e. a geodesic whose length realises dM(x))
with endpoint y ∈ M is such that y ∈ M (i.e. is a regular point of M).

Proof. Let γ be a geodesic from x to M , realising dM(x), with endpoint
y ∈ M . Fix z in the image of γ such that distN(z, y) < inj(N). The
geodesic ball, B, centred at z of radius distN(z, y) is such that B∩M = ∅,
else γ would not be minimising, and y ∈ ∂B ∩M .

By the stationarity of M with respect to volume preserving deforma-
tions (in particular as a consequence of the monotonicity formula) there
exist tangent cones to M at y. As B ∩ M = ∅, any tangent cone to M
at y is supported in a half-space of Rn+1 with boundary given by the
tangent plane to B at y. By [Sim84, Chapter 7, Theorem 4.5/Remark
4.6] we have that any tangent cone to M is in fact the (possibly high
multiplicity) tangent plane to B at y . The sheeting theorem provided
by [BW20c, Theorem 5.1] then implies that y ∈ M .

Let F (y, t) = expy(tν(y)) where y ∈ M , t ∈ R and ν is the choice
of unit normal to M pointing into E. We then have that F (y, t) is a
geodesic emanating from M orthogonally; here we interpret F (y, t) for
t < 0 by expy(t(ν−(y))) where ν− is the unit normal to M pointing into
N \E. We define σ+(y), σ−(y) ∈ R with σ+(y) > 0 and σ−(y) < 0 chosen
so that F (y, t) is the minimising geodesic between its endpoint y, on M ,
and F (y, t) for all σ−(y) ≤ t ≤ σ+(y) but fails to be the minimising
geodesic, between y and F (y, t), for t > σ+(y) or t < σ−(y). With this
definition we define the cut locus of M to be

Cut(M) = {F (y, σ±(y)) : y ∈ M,σ±(y) < ∞}. (2.12)

Standard theory (see e.g. [Sak96, Chapter III]) for geodesics characterises
the cut locus in the following manner: if x = F (y, σ±(y)) ∈ Cut(M) then
either their exist (at least) two distinct geodesics realising dM(x) or the
map

F : M × (0,∞) → N

is such that dF (y, σ±(y)) is not invertible. We then see that

Sd
M

∩ (N \M) = Cut(M)
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(c.f. [MM02, Proposition 4.6]), and so in order to establish the countable
n-rectifiability of Sd

M
it is sufficient (as Sd

M
is countably n-rectifiable, as

mentioned above) to show that Cut(M) \ Sd
M

is countably n-rectifiable
in N \ M ; this fact is the analogue of [MM02, Proposition 4.9] in the
case that the hypersurface M may contain singularities. Observe that
we have Sd

M
∩M ⊂ Sing(M) and, as noted above, Sing(M) has zero Hn

measure, so this set does not affect the rectifiability.

The proof of [MM02, Proposition 4.9] may be adapted (exactly as
in [Bel23b, Section 3]) to our setting by virtue of the fact that their
arguments are local to points away from M , and hence we may apply the
arguments used in their proof to our situation without change. Thus we
conclude that Sd

M
is countably n-rectifiable, and consequently its Hn+1

measure is zero.

The level sets of dM are smooth on N \ (M ∪ Sd
M

) by virtue of the
Implicit Function Theorem, invertibility of F and differentiability of dM

on this set. The arguments in the proof of [MM02, Proposition 4.6] show
further that the map F restricts to a diffeomorphism,

F : {(y, t) : y ∈ M, t ∈ (σ−(y), σ+(y))} → N \ (M ∪ Sd
M

).

We then extend F to the set M × {0} by setting F (y, 0) = y for each
y ∈ M . The image of the extension of F is then N \ (Sing(M) ∪ Sd

M
).

Finally, by defining the coordinates

VM = {(y, t) | y ∈ M, t ∈
(
σ−(y), σ+(y)

)
}, (2.13)

we have that VM is diffeomorphic to N \ (Sing(M) ∪ Sd
M

).

Remark 2.11. For each compact set, K ⊂ M , the continuity of the
functions σ±(x) (which follows from [Sak96, Chapter III, Lemma 4.2])
on M implies that there exists some constant, cK0, such that

0 < cK < min
x∈K

{σ+(x), |σ−(x)|}.

For such a compact set K, as M itself is a two-sided hypersurface, there
is a two-sided tubular neighbourhood of K when viewed as a subset of VM

(the coordinates defined in (2.13)), given by K×(−cK , cK) with its closure
a subset of VM . Furthermore, by the definition of cK, the image under the
map F of this two-sided tubular neighbourhood, F (K × (−cK , cK)) ⊂ N ,
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is such that

F (K × (−cK , cK)) ∩ (Sing(M) ∪ Sd
M

) = ∅.

Remark 2.12. We are now able to define a projection to the hypersurface
M on the set N \(Sing(M)∪Sd

M
). Precisely, for each y ∈ N \(Sing(M)∪

Sd
M

) there exists a unique geodesic in N with endpoint x ∈ M realising
dM(y) (i.e. such that dM(y) = dN(x, y)). We then denote by Π the smooth
projection from a point in N \ (Sing(M) ∪ Sd

M
)) to its unique endpoint

in M . Note that we may express this projection as

Π(x) = F ◦ ΠVM
◦ F−1(x),

where ΠVM
is the smooth projection map to the first factor, defined in the

coordinates VM by sending the point (x, s) ∈ VM to (x, 0) ∈ VM .

2.3.2 Level sets of the signed distance function

We now define the signed distance function on N , corresponding to our
choice of unit normal, ν, to the hypersurface M pointing into E, by

d±
M

=


+dM(x), if x ∈ E

0, if x ∈ M

−dM(x), if x ∈ N \ E

;

so that a positive sign corresponds to our point lying in E. Denoting
by Sd±

M

the set of points in N \ M where d±
M

fails to be differentiable,
we then have that Sd±

M

= Sd
M

and thus, by the arguments in Subsection
2.3.1, Sd±

M

is countably n-rectifiable with zero Hn+1 measure.

We also denote the level sets, for each s ∈ R, of the signed distance
function, d±

M
, by

Γ(s) = {x ∈ N | d±
M

= s}.

These level sets are smooth in the open set N \(Sd±
M

∪M) by the Implicit
Function Theorem (as the signed distance is smooth and the exponential
map is invertible on this open set). Note in particular that we have

Γ(s) = ∅ for |s| > d(N),

where d(N) denotes the diameter of N .

We use the following notation to refer to the smooth parts of the
level sets of d±

M
, setting Γ̃(0) = M , and for s 6= 0 we denote the smooth
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portion by
Γ̃(s) = Γ(s) \ Sd±

M

.

As Sd±
M

is countably n-rectifiable, and hence has vanishing Hn+1 measure,
we may apply the co-area formula (slicing with the function d±

M
, which

is such that |∇d±
M

| = 1 a.e.) to conclude that

for a.e. s ∈ R we have Hn
(

Γ(s) ∩ Sd±
M

)
= 0. (2.14)

Recall the diffeomorphism

F : VM → N \ (Sing(M) ∪ Cut(M))

defined by F (y, t) = expy(tν(y)) and the coordinates, VM , as defined in
(2.13) on the set N \ (Sing(M) ∪ Cut(M)). We equip VM with the pull-
back metric via the map F , giving the usual induced metric for M on
M × {0} ⊂ VM . Note that with these coordinates we have

F−1(Γ̃(s)) = M × {s} ⊂ VM .

We now work directly with the coordinates provided by VM in order to
establish various properties about the smooth portions of the level sets
of d±

M
.

We first choose local coordinates, (x1, . . . , xn, s), on VM so that the
vector fields ∂

∂x1
, . . . , ∂

∂xn
provide a local orthonormal frame around a

given point x0 ∈ M , and so that ∂
∂s

is the unit speed of geodesics with
constant base-point in M . The pullback metric (via the map F ) then
induces a volume form on VM , and hence, at a point (x0, s0) ∈ VM , an
area element, θ(x, s), on the set M × {s0} ⊂ VM . We trivially extend
this area element to the entire set M × R by setting θ(x, s) = 0 for
(x, s) ∈ (M × R) \ VM .

From the structure of VM and the map F we thus have for each s ∈ R
that ∫

M
θ(x, s)dx1 · · · dxn = Hn(Γ̃(s)). (2.15)

In particular, recalling that the pull-back metric gives the induced metric
for M on M × {0}, we have that θ(x, 0) = 1 and thus

∫
M
θ(x, 0)dx1 · · · dxn = Hn(M).

As the volume form is smooth on VM , we have that the induced area
element, θ(x, s), is continuous in both variables, in particular we have for
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any x ∈ M that
θ(x, s) → θ(x, 0) as s → 0. (2.16)

We may then compute derivatives of the area element and conclude, from
[Gra04, Theorem 3.11], that

∂

∂s
log(θ(x, s)) = −H(x, s), (2.17)

which yields
∂sθ(x, s) = −H(x, s)θ(x, s). (2.18)

In the above H(x, s) denotes the scalar mean curvature, of the the pull-
back of the level set Γ(s) to VM , at the point (x, s) ∈ VM . Note that we
thus have H(x, 0) = λ (as M is assumed to be a hypersurface of constant
mean curvature λ). We also recall the Ricatti equation governing the
evolution of the mean curvature along geodesics, from [Gra04, Corollary
3.6], in the following form

∂

∂s
H(x, s) ≥ min

N
Ricg. (2.19)

Precisely, we set minN Ricg = min|X|=1 Ricg(X,X). Let us hereafter
denote by m = minN Ricg > 0. By integrating the inequality (2.19) we
then have that 

H(x, s) ≥ λ+ms for s > 0

H(x, 0) = λ

H(x, s) ≤ λ+ms for s < 0

. (2.20)

We then combine (2.17) with (2.20) and apply the Fundamental Theorem
of Calculus, in order to compute the following inequality for the area
element which is valid for each t ∈ R

log(θ(x, t)) ≤ −
∫ t

0
(ms+ λ) ds.

From this we directly conclude that

θ(x, t) ≤ e−t
(

mt
2 +λ

)
. (2.21)

Noting that the quadratic −t
(

mt
2 + λ

)
is maximised for t = − λ

m
, by

plugging this into (2.21), we see that for each s ∈ R

θ(x, s) ≤ e
λ2
2m . (2.22)

We may then apply the Dominated Convergence Theorem to see that,
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by (2.16) and (2.22), we have
∫

M
θ(x, s)dx1 · · · dxn →

∫
M
θ(x, 0)dx1 · · · dxn.

In particular, by (2.15) and the fact that θ(x, 0) = 1, we ensure that

Hn(Γ̃(s)) → Hn(M) as s → 0. (2.23)

Finally, let us record for later use that (2.23) above implies that

ess infs∈[−2εΛε,2εΛε]Hn(Γ̃(s)) → Hn(M) as ε → 0, (2.24)

and
ess sups∈[−2εΛε,2εΛε]Hn(Γ̃(s)) → Hn(M) as ε → 0. (2.25)

2.3.3 Approximation with the one-dimensional pro-
file

Denote by H the monotonically increasing solution to the following ODE

u′′ −W ′(u) = 0,

namely the one-dimensional Allen–Cahn equation, subject to the condi-
tions that H(0) = 0

lims→±∞ H(s) = ±1
.

In particular, for the standard choice of potential, W (u) = (1−u2)2

4 , we
have explicitly that H(s) = tanh( s√

2). We note also that the re-scaled
function Hε(s) = H( s

ε
) solves the ODE

εu′′ − W ′(u)
ε

= 0.

We now recall the construction of a smooth, increasing truncation of the
one-dimensional heteroclinic solution to the re-scaled Allen–Cahn equa-
tion, Hε, as used in [Bel23b] (this same identical truncation is also utilised
in [WW19], [CM20] and [BW24]). For the construction of Allen–Cahn
approximations, this truncation will be placed in the normal direction
for the various underlying hypersurfaces sketched in Step 2 of the proof
strategy outlined in Subsection 2.1.3.

The truncation we construct has the advantage that it will be con-
stant, identically equal to either ±1, outside of an interval (depend-
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ing on ε > 0) of the form [−6ε| log(ε)|, 6ε| log(ε)|]; thus outside of a
tubular neighbourhood (of radius 6ε| log(ε)|) our approximating func-
tions will contribute no energy (as eε(H

ε(s)) = 0 outside of the interval
[−6ε| log(ε)|, 6ε log(ε)]).

We first perform the truncation for H and then re-scale to the ε

level. First we let χ ∈ C∞
c (R) be a smooth cutoff function such that the

following properties hold


χ ≡ 1 on (−1, 1)

χ ≡ 0 on R \ (−2, 2)

χ(−s) = χ(s) for all s ∈ R

χ′(s) ≤ 0 for s ≥ 0

.

Denoting Λε = 3| log(ε)| we then define the trunctation

H(s) =

χ
(

s
Λε

)
H(s) +

(
1 − χ

(
Λε

|s|

))
for s > 0

χ
(

s
Λε

)
H(s) −

(
1 − χ

(
Λε

|s|

))
for s < 0

.

With this choice of truncation we then ensure that the following proper-
ties hold for the re-scaled truncation, Hε(s) = H( s

ε
),


Hε ≡ Hε on (−εΛε, εΛε)

Hε ≡ 1 on (−∞,−2εΛε]

Hε ≡ 1 on [2εΛε,∞)

;

thus we have that eε(H
ε(s)) = 0 for |s| ≥ 2εΛε, as desired.

Summarising the computations carried out in [Bel23b, Section 2.2],
we then deduce that

Eε(H
ε) → 1 as ε → 0, (2.26)

where the specific convergence is such that for fixed β > 0 and ε > 0
sufficiently small we have

1 − βε2 ≤ Eε(H
ε) ≤ 1 + βε2. (2.27)

The above convergence properties for the energy of the re-scaled trunca-
tion guarantee that the functions we define from specific hypersurfaces
for the path will have energy behaviour that is a diffuse reflection of their
underlying geometry.

We may then finally proceed to define our one-dimensional profile by
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setting
vε(x) = Hε(d±

M
(x)).

As Hε is smooth and the distance function is Lipschitz, it follows that
vε ∈ W 1,2(N). We now prove that (2.2) holds, showing that vε acts as
a suitable Allen–Cahn “approximation” of the hypersurface M in the
sense that it recovers the ε → 0 limit of the energies of the critical points
obtained by the min-max in [BW20a]. We will exploit this fact directly
in the construction of the paths in Section 2.5, eventually allowing us to
establish Theorem 2.3.

By applying the co-area formula, slicing with d±
M

and noting again
that |∇d±

M
| = 1 a.e., we compute, similarly to [BW24, Section 3.6], that

Fε,λ(vε) = Eε(vε) − λ

2

∫
N
vε

= 1
2σ

∫
N

ε

2 |∇vε|2 + W (vε)
ε

− λ

2

∫
N
vε

= 1
2σ

∫
R

∫
Γ(t)

ε

2

((
Hε
)′

(t)
)2

+ W (Hε(t))
ε

dHndt

− λ

2

∫
R

∫
Γ(t)

Hε(t)dHndt.

Using (2.14) and the definition of the energy density, eε, as in Sub-
section 2.1.1, we then have that

Fε,λ(vε) = 1
2σ

∫
R
eε(H

ε(t))Hn(Γ̃(t))dt− λ

2

∫
R
Hε(t)Hn(Γ̃(t))dt.

From the properties of Hε as stated above we may obtain the following
two bounds:

Fε,λ(vε) ≥ ess infs∈[−2εΛε,2εΛε]Hn(Γ̃(s))Eε(H
ε) − λ

2

∫ ∞

−2εΛε

Hn(Γ̃(t))dt

+ λ

2

∫ −2εΛε

−∞
Hn(Γ̃(t))dt,

and also

Fε,λ(vε) ≤ ess sups∈[−2εΛε,2εΛε]Hn(Γ̃(s))Eε(H
ε) − λ

2

∫ ∞

2εΛε

Hn(Γ̃(t))dt

+ λ

2

∫ 2εΛε

−∞
Hn(Γ̃(t))dt.

Remark 2.13. Whenever one is just considering minimal hypersurfaces,
namely when λ = 0 and thus Fε,λ = Eε, one can now simply proceed to
establish (2.2) (which in this case is simply the convergence of the Allen–
Cahn energy of the one-dimensional profile, Eε(vε), to the area of M ,
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Hn(M)) by utilising (2.24), (2.25) and (2.26) directly and ignoring the
following volume bounds.

Further simplifications in this vein may be made for the energy calcu-
lations along the various paths sketched in Step 2 of the proof strategy in
Subsection 2.1.3 and are explicitly outlined in Appendix 2.A. The main
advantage in the minimal case is the lack of a volume term contribution
in the energy which corresponds to the fact that the limiting functional
one considers in this case is simply the area; hence does not record an
enclosed volume term, unlike Fλ.

In the general case however, we observe that

Volg(E) = Hn+1({x ∈ N | d±
M
> 0}) =

∫ ∞

0
Hn(Γ̃(t))dt

= lim
ε→0

∫ ∞

±2εΛε

Hn(Γ̃(t))dt,

and

Volg(N \ E) = Hn+1({x ∈ N | d±
M
< 0}) =

∫ 0

−∞
Hn(Γ̃(t))dt

= lim
ε→0

∫ ±2εΛε

−∞
Hn(Γ̃(t))dt.

Recalling (2.14) and combining these two identities with (2.24), (2.25)
and (2.26) in the above two bounds on Fε,λ(vε) we thus conclude that

Fε,λ(vε) → Hn(M) − λVolg(E) + λ

2 Volg(N) = Fλ(E) as ε → 0,

establishing (2.2) as desired.

2.4 Relating local properties of the energy
to the geometry

This section relates local behaviour of the energy of the one-dimensional
profile, vε = Hε ◦ d±

M
, to the local geometric properties of M . Recall

that (as defined in Subsection 2.1.1) M = ∂∗E ⊂ N is assumed to be
a closed embedded hypersurface of constant mean curvature λ, smooth
away from a closed singular set, denoted Sing(M) = M \M , of Hausdorff
dimension at most n − 7. Furthermore, M separates N \ M into open
sets, E and N \E, with common boundary given by M so that E ∈ C(N)
with M = ∂∗E. For a given isolated singularity p ∈ M we fix throughout
this section some 0 < r1 < r2 < min{Rp, Rl} (the values of Rp and Rl

were chosen in Subsection 2.1.1 based on the isolated singularity, p, and
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choice of metric, g on N respectively) such that M ∩Br2(p) \Br1(p) is a
smooth hypersurface.

2.4.1 Local smoothing of Caccioppoli sets

We first establish a procedure to locally perturb Caccioppoli sets, as-
sumed to be smooth in an annular region, in order to ensure that they
are smooth in the entire ball. This smoothing will be utilised for the con-
struction of “recovery functions” that approximate local Fλ-minimisers
in Subsection 2.4.3. The following construction is technically involved
but we emphasise that it boils down to a “cut-and-paste” gluing between
a smooth level set of a mollified indicator function for a Caccioppoli set
and its boundary.

Proposition 2.2. Suppose that F ∈ C(N) is such that

F \Br1(p) = E \Br1(p),

and fix some r̃2 ∈ (r1, r2). Then, for each δ > 0, there exists Fδ ∈ C(N)
with the following properties:

• ∂Fδ is smooth in Br2(p).

• Fδ \Br̃2(p) = E \Br̃2(p).

• |Perg(Fδ) − Perg(F )| ≤ δ.

• V olg(Fδ∆F ) ≤ δ.

In particular, we guarantee that Fδ agrees with F outside of Br̃2(p) and
is such that

|Fλ(Fδ) − Fλ(F )| ≤ (1 + λ)δ.

Remark 2.14. Though Proposition 2.2 is phrased in our setting to locally
smooth a constant mean curvature hypersurface, the proof makes no use
of the variational assumption on M . Thus, the same result holds for any
Caccioppoli set which satisfies the same properties as M , without any
condition on the mean curvature (i.e. simply for Caccioppoli sets that
are only assumed to have smooth boundary in an annular region).

Proof. Recall that, as r2 < Rl, Br2(p) is 2-bi-Lipschitz to the Euclidean
ball BRn+1

r2 (0) via some a geodeisic normal coordinate chart, φ, with
φ(p) = 0 and such that

1
2 ≤

√
|g| ≤ 2 on Br2(p). (2.28)
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We consider a radially symmetric mollifier ρ ∈ C∞
c (BRn+1

1 (0)) such that∫
Rn+1 ρ = 1 and re-scaling, for each θ > 0, define ρθ(x) = 1

θn+1ρ(x
θ
). Fixing

r̃2 ∈ (r1, r2) we consider, for θ < r2 − r̃2, the function

sθ = (χφ(F ) ∗ ρθ) ◦ φ ∈ C∞(Br̃2(p)).

We now show that sθ approximates the indicator function of the set F ,
χF , in the BV norm. First, by standard properties of mollifiers and
application of (2.28) we have

||χF − sθ||L1(Br̃2 (p))) =
∫

Br̃2 (p)
|χF − (χφ(F ) ∗ ρθ) ◦ φ|dHn

g

=
∫

φ(Br̃2 (p))
|χφ(F ) − (χφ(F ) ∗ ρθ)|

√
|g|dLn

≤ 2||χφ(F ) − (χφ(F ) ∗ ρθ)||L1(φ(Br̃2 (p))) → 0 as θ → 0.

Hence, lower semi-continuity of the perimeter yields

Perg(F ) = |DgχF |(Br̃2(p)) ≤ lim inf
θ→0

|Dgsθ|(Br̃2(p)). (2.29)

For the reverse inequality we let X ∈ Γ1
c(TBr̃2(p)) (a compactly sup-

ported C1 vector field) with |X|g ≤ 1 and compute that
∫

Br̃2 (p)
sθdivgXdHn

g =
∫

φ(Br̃2 (p))
(χφ(F ) ∗ ρθ)∂i(

√
|g|X̂ i)dLn

=
∫

φ(Br̃2 (p))
χφ(F )∂i(ρθ ∗

√
|g|X̂ i)dLn

=
∫

Br̃2 (p)
χF divgY ≤ |DgχF |(Br̃2(p)),

where here X̂ = X̂ i∂φ
i with X̂ i = X i ◦ φ−1, and Y = Y i∂φ

i with

Y i = 1√
|g|

(
ρθ ∗

√
|g|X̂ i

)
◦ φ,

so that |Y |g ≤ 1. As the choice of X above was arbitrary in the above,
we thus conclude, in combination with (2.29), that we have the desired
convergence,

lim
θ→0

|Dgsθ|(Br̃2(p)) = |DgχF |(Br̃2(p)).

Arguing identically as in the proof of [Mag12, Theorem 13.8], we conclude
that the super-level sets of sθ (which have smooth boundary for almost
every t ∈ (0, 1) by Sard’s Theorem), Lt

θ = {sθ > t}, for a.e. t ∈ (0, 1),
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provide a sequence of open sets with smooth boundary such that both
V olg(Lt

θ∆F ) → 0 as θ → 0

Per(Lt
θ;A) → Per(F ;A) as θ → 0

, (2.30)

for each open set A ⊂ Br̃2(p), whenever Per(F ; ∂A) = 0 (here we are
using ∆ to denote the symmetric difference of two sets).

As the exponential map is a radial isometry, we have that our geodesic
normal coordinate chart, φ, is such that BRn+1

r2 (0) = φ(Br2(p)) and

S = φ
(
M ∩ (Br2(p) \Br1(p))

)
is a smooth hypersurface in BRn+1

r2 (0) \ BRn+1
r1 (0). In particular we may

choose a pair of positive radii r1 < ra < rb < r̃2 so that, for some fixed
δ > 0, the set

T = {x+ bνS(x) | x ∈ S ∩ (BRn+1
rb

(0) \BRn+1

ra
(0)), b ∈ [−δ, δ]},

is such that T ⊂⊂ BRn+1
r̃2 (0)\BRn+1

r1 (0). Here in the above we are denoting
the unit normal induced on S from M by νS; note then that as ν is chosen
to be the unit normal pointing into E and F \ Br1(p) = E \ Br1(p) we
see that

F ∩ φ−1(T ) = φ−1({x+ bνS(x) ∈ T | b > 0}). (2.31)

We now consider normal derivatives of the function χ
F̂

∗ ρθ = sθ ◦ φ−1

for θ < δ (where we denote F̂ = φ(F )) in the tubular neighbourhood T

defined above. For x+ bνS(x) ∈ T and θ > 0 small enough so that

νS(y) · νS(x) ≥ 1
2 for any y ∈ B2θ(x) (2.32)

(S is smooth so νS varies continuously), we compute that for b ∈ (−θ, θ)
we have

∇(χ
F̂

∗ ρθ)(x+ bνS(x)) · νS(x) = (∇χ
F̂

∗ ρθ)(x+ bνs(x)) · νS(x)
= −((HnxS)νS ∗ ρθ)(x+ bνS(x)) · νS(x)

= −
(∫

S∩Bθ(x+bνS(x))
ρθ(x+ bνS(x) − y)νS(y) · νS(x)dHn(y)

)

≤ −1
2

(∫
S∩Bθ(x+bνS(x))

ρθ(x+ bνS(x) − y)dHn(y)
)
< 0.

Here we’ve used (2.32), that DgχF̂
= −(HnxS)νS in T as S is smooth,

and by the triangle inequality we have both Bθ(x+ bνS(x)) ⊂ B2θ(x) for
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b < θ and that the final strict inequality holds as

S ∩Bθ−b(x) ⊂ S ∩Bθ(x+ bνS(x)).

Thus we have that both∇(χ
F̂

∗ ρθ)(x+ bνs(x)) · νS(x) < 0 for b ∈ (−θ, θ)

∇(χ
F̂

∗ ρθ)(x+ bνS(x)) = 0 for b /∈ (−θ, θ)
,

where in the second case we then have that χ
F̂

∗ ρθ ∈ {0, 1}. We thus
conclude that for each t ∈ (0, 1) and x ∈ S ∩ (BRn+1

rb
(0) \BRn+1

ra
(0)) there

exists a unique bt
θ(x) ∈ (−θ, θ) such that

(χ
F̂

∗ ρθ)(x+ bt
θ(x)νS(x)) = t,

which are such that bt
θ → 0 point-wise on S ∩ (BRn+1

rb
(0) \ BRn+1

ra
(0)) as

θ → 0. Note also that by the structure of T we have

Lt
θ ∩ φ−1(T ) = φ−1({x+ bνS(x) ∈ T | b < bt

θ(x)}). (2.33)

Consider now the function

hθ : S ∩ (BRn+1
rb

(0) \BRn+1

ra
(0)) × (−θ, θ) → T

defined by setting

ht
θ(x, b) = (χ

F̂
∗ ρθ)(x+ bνS(x)) − t.

By the above calculation we ensure that

∂hθ

∂b
(x+ bνS(x)) = ∇(χ

F̂
∗ ρθ)(x+ bνS(x)) · νS(x) < 0

and so by the Implicit Function Theorem (working in charts in which
S ∩ (BRn+1

rb
(0) \ BRn+1

ra
(0)) is locally a graph over its tangent plane) we

have that the function bt
θ is smooth on S ∩ (BRn+1

rb
(0) \BRn+1

ra
(0)) (noting

that ht
θ(x, bt

θ(x)) = 0 for x in this set).

We now show that the directional derivatives of the functions bt
θ con-

verge to zero as θ → 0. At a point x ∈ S∩(BRn+1
rb

(0)\BRn+1
ra

(0)), denoting
directional derivatives by ∂

∂xi
, we compute that by (2.32) we have

∣∣∣∣∣∣∣∣
(

∂ht
θ

∂xi

)
(

∂ht
θ

∂b

)
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∇(χ

F̂
∗ ρθ)(x+ bνS(x)) · ∂

∂xi
(x+ bνS(x))

∇(χ
F̂

∗ ρθ)(x+ bνS(x)) · νS(x))

∣∣∣∣∣∣
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=
∣∣∣∣∣∣
∫

S∩Bθ(x+bνS(x)) ρθ(x+ bνS(x) − y)νS(y) · ∂
∂xi

(x+ bνS(x))dHn(y)∫
S∩Bθ(x+bνS(x)) ρθ(x+ bνS(x) − y)νS(y) · νS(x)dHn(y)

∣∣∣∣∣∣
≤ 2 sup

y∈S∩Bθ(x+bνS(x))

∣∣∣∣∣νS(y) · ∂

∂xi

(x+ bνS(x))
∣∣∣∣∣ → 0 as θ → 0.

The last term in the above converges to zero as θ → 0 by using the
triangle inequality, noting that νS(y) · ∂

∂xi
x → 0 by the continuity of νS

and νS(y) ·b∂νS(x)
∂xi

≤ Cθ for a constant C depending only on the choice of
unit normal, νS, to S. We then have from the Implicit Function Theorem
that ∣∣∣∣∣∂bt

θ

∂xi

∣∣∣∣∣ (x) =

∣∣∣∣∣∣∣∣
(

∂ht
θ

∂xi

)
(

∂ht
θ

∂b

)
∣∣∣∣∣∣∣∣ (x, b

t
θ(x)) → 0 as θ → 0.

We conclude that the function bt
θ defined on S∩(BRn+1

rb
(0)\BRn+1

ra
(0)) for

t ∈ (0, 1) as above is smooth and in fact converges to zero uniformly in
the C1 norm as θ → 0. This convergence will aid us in ensuring perimeter
control for the following constructions of the local smoothings.

We fix a further choice of r̃a ∈ (ra, rb) so that for θ < r̃a − ra we
ensure (by the triangle inequality) that x+bt

θ(x)νS(x) ∈ Br̃a(p) whenever
x ∈ ∂Bra(p) (i.e. when |x| = ra). Then we fix a further r̃b ∈ (r̃a, rb) so
that for θ < rb − r̃b we ensure (again by the triangle inequality) that
x+ bt

θ(x)νS(x) ∈ N \Br̃b
(p) whenever x ∈ ∂Brb

(p) (i.e. when |x| = rb).

We then choose a smooth radially symmetric cutoff function, η ∈
C∞

c (Rn+1), with the following properties


0 ≤ η ≤ 1 on Rn+1

|∇η| ≤ Cη on Rn+1

η(x) = 1 if |x| ≤ r̃a

η(x) = 0 if |x| ≥ r̃b

,

for some fixed Cη = Cη(r̃a, r̃b) > 0.

Before proceeding to define the local smoothing we let

H t
θ = φ−1

(
{x+ bνS(x) ∈ T | b < η(x)bt

θ(x)}
)
,

and, slightly abusing notation, we denote

∂H t
θ = φ−1

({
x+ η(x)bt

θ(x)νS(x) | x ∈ S ∩ (BRn+1
rb

(0) \BRn+1

ra
(0))

})
,

where the notation for boundary is justified by virtue of the fact that, as
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M separates the region T , the “graph”, given by

φ−1(x+ η(x)bt
θ(x)νS(x)),

also separates the region φ−1(T ).

We then consider the following hypersurface

∂Gt
θ = (M \Br̃b

(p)) ∪ (∂Lt
θ ∩Br̃a(p)) ∪

(
∂H t

θ ∩ (Br̃b
(p) \Br̃a(p))

)
which we ensure is smooth inside of Brb

(p) as H t
θ ∩ ∂Br̃a(p) ∈ ∂Lt

θ and
H t

θ ∩ ∂Br̃b
(p) ∈ M . We note also that as M satisfies the geodesic touch-

ing property from Lemma 2.1, by construction the boundary ∂Gt
θ also

satisfies the conclusions of Lemma 2.1.

Furthermore, by (2.31) and (2.33), ∂Gt
θ arises as the boundary of the

open set

Gt
θ = (E \ ((Br̃b

(p) ∪ φ−1(T ))) ∪ (Lt
θ ∩Br̃b

(p) \ φ−1(T )) ∪ (H t
θ ∩ φ−1(T )),

and hence
Gt

θ \Br̃2(p) = E \Br̃2(p)

as φ−1(T ) ⊂⊂ Br̃2(p) \Br1(p).

We may explicitly write the set (Lt
θ∆E) ∩ φ−1(T ) as

φ−1


x+ bνS(x) ∈ T

∣∣∣∣∣
0 < b < bt

θ(x), if bt
θ(x) > 0

bt
θ < b < 0, if bt

θ(x) < 0


 .

As 0 ≤ η ≤ 1, we know that η(x)bt
θ(x) has the same sign as bt

θ and by
the choice of η that |η(x)bt

θ(x)| ≤ |bt
θ(x)|. Therefore, by construction of

H t
θ, we have that

(Gt
θ∆E) ∩ φ−1(T ) ⊂ (Lt

θ∆E) ∩ φ−1(T ).

As the set Gt
θ agrees with either E or Lt

θ outside of φ−1(T ) we conclude
that Gt

θ∆F ⊂ Lt
θ∆F and hence by (2.30) we have

V olg(Gt
θ∆F ) ≤ V olg(Lt

θ∆F ) → 0 as θ → 0.

Thus we may choose θ > 0 sufficiently small to ensure that

V olg(Gt
θ∆F ) ≤ δ. (2.34)
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We note that we may always ensure that the four radii ra, r̃a, r̃b and rb

as chosen above are done so to ensure that

Perg(F ; ∂(Br̃b
(p) \ φ−1(T ))) = 0,

(this may be done without loss of generality by the assumption that F
has finite perimeter) so that we guarantee

Perg(Lt
θ;Br̃b

(p) \ φ−1(T )) → Perg(F ;Br̃b
(p) \ φ−1(T )) as θ → 0.

In particular, for θ > 0 sufficiently small we ensure that

|Perg(Lt
θ;Br̃b

(p) \ φ−1(T )) − Perg(F ;Br̃b
(p) \ φ−1(T ))| ≤ δ

2 .

As we have Gt
θ = E outside of Br̃b

∪ φ−1(T ) we also have that

Perg(Gt
θ;N \ (Br̃b

∪ φ−1(T ))) = Perg(E;N \ (Br̃b
∪ φ−1(T ))).

Note that as |∇η| < Cη and bt
θ → 0 uniformly in the C1 norm we may

choose θ > 0 potentially smaller to ensure that

sup
y∈M∩(Brb

(p)\Bra (p))
|Jφ−1◦(Id+(ηbt

θ
))◦φ(y) − 1| ≤ δ

2Hn(M ∩ (Brb
(p) \Bra(p))) ,

where here Jf denotes the Jacobian of a function f (which depends only
on the C1 norm of the function f), and so by the area formula we have

|Hn(∂H t
θ ∩ φ−1(T )) − Hn(M ∩ φ−1(T ))|

=
∣∣∣∣∣
∫

M∩(Brb
(p)\Bra (p))

(Jφ−1◦(Id+(ηbt
θ
))◦φ(y) − 1)dHn(y)

∣∣∣∣∣ ≤ δ

2 .

We may combine all the above facts to compute that, for θ > 0 sufficiently
small, we have

|Perg(Gt
θ) − Perg(F )| = |Perg(Gt

θ;φ−1(T )) − Perg(F ;φ−1(T ))
+ Perg(Gt

θ;N \ φ−1(T )) − Perg(F ;N \ φ−1(T ))|
≤ |Hn(∂H t

θ ∩ φ−1(T )) − Hn(M ∩ φ−1(T ))|
+ |Perg(Lt

θ;Br̃b
(p) \ φ−1(T )) − Perg(F ;Br̃b

(p) \ φ−1(T ))| ≤ δ

and thus guaranteeing, in combination with (2.34), that

|Fλ(Gt
θ) − Fλ(F )| ≤ (1 + λ)δ.
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Finally, by setting Fδ = Gt
θ for one choice of almost any t ∈ (0, 1) and

a choice of θ > 0 sufficiently small as above then provides a Caccioppoli
satisfying the desired conclusions.

We conclude this subsection with a remark that will prove useful
for controlling the energy of the “recovery functions” we construct to
approximate a given local Fλ-minimiser in Subsection 2.4.3.

Remark 2.15. As ∂Fδ is smooth in Br2(p) and agrees with M outside of
Br̃2(p), we have that ∂Fδ satisfies the conclusions of Lemma 2.1. More
specifically, for any x ∈ N \ ∂Fδ, any minimising geodesic connecting x
to ∂Fδ has endpoint in a regular point of ∂Fδ. This fact will be exploited
for the construction of the “recovery functions” in Lemma 2.3.

2.4.2 Local energy minimisation

We now prove the existence of local energy minimisers that agree with
our one-dimensional profile, vε = d±

M
◦ Hε, outside of a fixed ball in N .

Minimisers of such problems will be used in Subsection 2.4.3 in order
to conclude local geometric properties of the underlying constant mean
curvature hypersurface, M , under appropriate assumptions on the be-
haviour of the energy of vε as ε → 0. It is interesting to note that the
boundary condition, imposed by vε, in the following minimisation prob-
lem depends on the approximating parameter ε > 0; our explicit control
(namely (2.2)) of the function, vε, providing the boundary condition in
the limit as ε → 0 ensures that the minimisation problem reflects the
underlying geometric behaviour of M .

Lemma 2.2. Let Bρ(q) ⊂ N be a ball, of radius ρ > 0, centred at a point
q ∈ M and define, for each ε ∈ (0, 1), the class of functions

Aε,ρ(q) = {u ∈ W 1,2(N) | |u| ≤ 1, u = vε on N \Bρ(q)}.

Then, there exists gε ∈ Aε,ρ(q) such that

Fε,λ(gε) = inf
u∈Aε,ρ(q)

Fε,λ(u).

Proof. Let Iε = infu∈Aε,ρ(q) Fε,λ(u) and consider {uk}∞
k=1 ∈ Aε,ρ(q) such

that Fε,λ(uk) → Iε as k → ∞. Note that for any u ∈ Aε,ρ(q) we have

Fε,λ(u) = 1
2σ

∫
N
ε
|∇u|2

2 + W (u)
ε

− λ

2

∫
N
u ≥ 1

2σ

∫
N
ε
|∇u|2

2 − λ

2 Volg(N),

using the fact that |u| ≤ 1 Hn+1-a.e. and W ≥ 0. Hence, for k sufficiently
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large we have that

∫
N

|∇uk|2 ≤ 4σ
ε

(
Iε + 1 + λ

2 Volg(N)
)
,

so supk ||∇uk||L2(N) < ∞; note here that our bound is in fact dependent
on the fixed choice of ε. Using the triangle and Poincaré inequality (as
uk = vε outside Bρ(q) so uk − vε ∈ W 1,2

0 (Bρ(q)) for each k ∈ N) we have

||uk||L2(N) = ||uk − vε + vε||L2(N) ≤ ||uk − vε||L2(N) + ||vε||L2(N)

≤ CP ||∇uk − ∇vε||L2(N) + ||vε||L2(N)

≤ CP (sup
k

||∇uk||L2(N) + ||∇vε||L2(N)) + ||vε||L2(N),

(where CP is the Poincaré constant for N) so supk ||uk||L2(N) < ∞. We
thus ensure that {uk}∞

k=1 is a bounded sequence in W 1,2(N) and hence,
by Rellich-Kondrachov compactness, there exists u ∈ W 1,2(N) and a
sub-sequence of the {uk}∞

k=1 (which we have not relabelled) such that uk

converges to u, weakly in W 1,2(N), strongly in L2(N) (hence strongly
in L1(N)) and Hn+1-a.e. in N . We then have that |u| ≤ 1 and u = vε

on N \ Bρ(q) at Hn+1-a.e. point, thus u ∈ Aε,ρ(q). Combining the weak
convergence of the uk in W 1,2(N), almost everywhere convergence of the
uk with Fatou’s lemma (using the continuity of W and the fact that
W ≥ 0) and the strong L1(N) convergence of the uk, we conclude that
Fε,λ(u) = Iε.

The above arguments show that, for all ε ∈ (0, 1), the energy minimi-
sation problem in the class Aε,ρ(q) is well posed. Hence, for each ε ∈ (0, 1)
we produce a function, gε ∈ W 1,2(N), with the following properties


|gε| ≤ 1 on N

gε = vε on N \Bρ(q)

Fε,λ(gε) = infu∈Aε Fε,λ(u)

.

Thus we conclude that gε ∈ Aε,ρ(q) and solves the energy minimisation
as desired. In particular, we note that Fε,λ(gε) ≤ Fε,λ(vε).

2.4.3 Recovery functions for local geometric prop-
erties

Using the local smoothing developed in Subsection 2.4.1, our approxi-
mation from Subsection 2.3.3 and the function side minimisation from
Subsection 2.4.2, we now establish the following “recovery function” type
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Lemma relating the energy of vε to local geometric properties of constant
mean curvature hypersurfaces; in particular producing an approximating
function for local Fλ-minimisers. This lemma will be utilised in the proof
of Theorem 2.3 in order to exploit a relation, namely (2.5) as sketched in
Subsection 2.1.3, between the ε → 0 energy behaviour of vε to the local
Fλ-minimisation of M .

Recall, from the beginning of this section, that for an isolated sin-
gularity p ∈ M we have fixed 0 < r1 < r2 < min{Rp, Rl} such that
M ∩Br2(p) \Br1(p) is a smooth hypersurface.

Lemma 2.3. Let F ∈ C(N) be such that F \Br1(p) = E \Br1(p) and

Fλ(F ) = inf
G∈C(N)

{Fλ(G) |G \Br1(p) = E \Br1(p)}.

Then, for ε > 0 sufficiently small, there exist functions fε ∈ Aε,r2(p), so
that |fε| ≤ 1 and fε = vε on N \Br2(p), such that

Fε,λ(fε) → Fλ(F ).

Furthermore, if the functions vε are such that

Fε,λ(vε) ≤ Fε,λ(gε) + τε for some sequence τε → 0 as ε → 0

where the gε ∈ Aε,r2(p) are defined as in Lemma 2.2 for Br2(p), then E

solves the above minimisation problem. Namely, we have that

Fλ(E) = inf
G∈C(N)

{Fλ(G) |G \Br1(p) = E \Br1(p)}.

Remark 2.16. The existence of solutions to the variational problem
given in Lemma 2.3 is guaranteed by standard arguments involving the
direct method (see e.g. [Mag12, Section 12.5]).

Proof. Let F ∈ C(N) solve the minimisation problem as in the assump-
tions of the lemma and consider, for each ε, δ > 0, the functions

fε,δ = Hε ◦ d±
∂Fδ
.

Here the set Fδ ∈ C(N) is a local smoothing of F resulting from an
application of Proposition 2.2 with the above choice of δ, and we define
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the signed distance function to ∂Fδ by

d±
∂Fδ

=


+d∂Fδ

(x), if x ∈ Fδ

0, if x ∈ ∂Fδ

−d∂Fδ
(x), if x ∈ N \ Fδ

,

where here d∂Fδ
is the usual distance function to the set ∂Fδ. Note that

the functions fε,δ ∈ Aε,r2(p) for ε > 0 small enough so that 2εΛε < r2−r̃2,
where r̃2 is chosen as in Proposition 2.2 (for a concrete choice one can
take r̃2 = r1 + r2−r1

2 ). To see this we note that as Fδ = E outside of
Br̃2(p) by its construction, we have that d∂Fδ

= dM on the set

(N \Br2(p)) ∩ {d∂Fδ
≤ 2εΛε}

and hence fε,δ = vε on N \ Br2(p) whenever ε is chosen appropriately
small as above.

By Remark 2.15, for each δ chosen as above the hypersurfaces given
by ∂Fδ satisfy the conclusions of Lemma 2.1. We may thus repeat the
analysis for each ∂Fδ (of the cut locus, level sets etc.) as we did for M
in Subsection 2.3.3 in order to conclude that

Fε,λ(fε,δ) → Fλ(Fδ) as ε → 0.

By the construction of the Fδ in Proposition 2.2 we ensure that

|Fλ(Fδ) − Fλ(F )| ≤ (1 + λ)δ

and thus by setting fε = fε, ε
1+λ

we ensure that this choice of sub-sequence
is such that

Fε,λ(fε) → Fλ(F ) as ε → 0

as desired.

For the second portion of the lemma, under the assumption that the
functions vε are such that

Fε,λ(vε) ≤ Fε,λ(gε) + τε for some sequence τε → 0 as ε → 0

and the fact that fε ∈ Aε,r2(p), we see that

Fε,λ(vε) ≤ Fε,λ(gε) + τε ≤ Fε,λ(fε) + τε.
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Here in the above we are using the fact that

Fε,λ(gε) = inf
u∈Aε,r2 (p)

Fε,λ(u) ≤ Fε,λ(fε)

by the construction of gε in Lemma 2.2. Hence, by (2.2) (as established
in Subsection 2.3.3) and the fact that Fε,λ(fε) → Fλ(F ) as ε → 0 from
the above, letting ε → 0 we conclude that

Fλ(E) ≤ Fλ(F ).

In particular we have that

Fλ(E) = inf
G∈C(N)

{Fλ(G) |G \Br1(p) = E \Br1(p)},

as desired.

Remark 2.17. By combining Lemma 2.3 with the results of [Mag12,
Section 28.2] we deduce that if the functions vε are such that Fε,λ(vε) ≤
Fε,λ(gε)+τε, for some sequence τε → 0 as ε → 0, (which by the conclusion
of Lemma 2.3 implies that M is locally Fλ-minimising in a ball around
p) then any tangent cone to the hypersurface M at a point of Br1(p)∩∂F
is area-minimising (in the sense that the cone is a perimeter minimiser
in Rn+1) and of multiplicity one.

2.5 Construction of paths

In order to prove Theorem 2.3 we will work under the contradiction
assumption (namely (2.9) as sketched in Subsection 2.1.3) that the one-
dimensional profile, vε = Hε ◦ d±

M
, as defined in Subsection 2.3.3 is such

that for all ε > 0 sufficiently small we have

Fε,λ(vε) ≥ Fε,λ(gε) + τ for some τ > 0.

Here the gε are defined, as in Subsection 2.4.2, to be the local energy
minimisers agreeing with the one-dimensional profile outside of a ball
centred on an isolated singularity of M . We then exhibit a continuous
path in W 1,2(N), from aε to bε, with energy along the path bounded a
fixed amount below Fλ(E), independent of ε (this is the path that was
sketched in Subsection 2.1.3). In this manner we will have exhibited, see
Section 2.6, an admissible path in the min-max procedure of [BW20a]
which contradicts the assumption that M arose from this construction,
thus establishing Theorem 2.3. In this section we explicitly construct the
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separate pieces of our desired path, showing that the maximum energy
along these pieces are bounded a fixed amount below Fλ(E), indepen-
dently of ε. We also provide here, in Appendix 2.A, alternative computa-
tions in the minimal case, namely when λ = 0 and thus Fε,λ = Eε, which
serve as a more straightforward route to prove that Theorem 2.3 holds
in this setting.

2.5.1 Choosing radii for local properties

We first fix various radii, dependent only on the geometry of M around
an isolated singularity, in order to later define functions for our path.
Let p ∈ Sing(M) be an isolated singularity of M , there then exists an
Rp > 0 (as defined in Subsection 2.1.1) such thatBRp(p)∩Sing(M) = {p},
i.e. such that M ∩BRp(p) \ {p} is smooth.

The fact that M has bounded (constant) mean curvature (specifically
as the monotonicity formula holds at all points of M) provides Euclidean
volume growth in sufficiently small balls. Namely we guarantee that
there exists two constants, Cp, rp > 0, both depending on the point
p ∈ Sing(M) such that, for all r < rp, we have

Hn(M ∩Brp(p)) ≤ Cpr
n. (2.35)

We fix a further choice, r0 ∈ 1
4(0,min{rp, Rp}), such that

Hn(M \B4r0(p)) > 3Hn(M)
4 . (2.36)

Set K̂ = M ∩ (BRp(p) \ Br0(p)), which is compact in M , so by the
reasoning in Remark 2.11 we ensure that there exists c

K̂
> 0 such that

F (K̂ × (−c
K̂
, c

K̂
)) ∩ (Sing(M) ∪ Sd

M
) = ∅.

Define on K̂ × (−c
K̂
, c

K̂
) ⊂ VM the function

h(x, a) = distN(F (ΠVM
(x, a)), p), (2.37)

where we use the definition of the projection, ΠVM
, as in Remark 2.12.

We thus ensure that, by the definitions in Remark 2.12, for (x, a) ∈
K × (−c

K̂
, c

K̂
) ⊂ VM we have, for some constant Ch > 0 dependent only

on K̂, N and g, that
|∇h(x, a)|(x,a) ≤ Ch. (2.38)

Here in the above we are computing the gradient, ∇, on VM with respect
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to the pullback metric F ∗g.

We now fix a choice of 0 < r < 3
4r0 sufficiently small to ensure that

for the annulus A = M ∩ (Br0+3r(p) \Br0+2r) we have, recalling that we
denote m = minN Ricg = min|X|=1 Ricg(X,X) as in Subsection 2.3.2,

Hn(A)
r2 ≤

me− λ2
2m Hn(M)
8C2

h

 . (2.39)

Here in the above we are using the Euclidean volume growth of the mass
of M (which follows again from the fact that the monotonicity formula
holds at all points of M) to ensure that Hn(A) is of order rn, combined
with the assumption that, by Remark 2.6, we may assume n ≥ 7. The
reason for the above precise choice of r will become clear when calculating
the energy of the shifted functions, vt,s

ε , in Subsection 2.5.3.

Finally, for ease of notation we define the balls Bi = Br0+ir(p) for
i ∈ {1, 2, 3, 4} which are such that B1 ⊂⊂ B2 ⊂⊂ B3 ⊂⊂ B4 ⊂⊂ B4r0(p);
with this notation we have that A = M ∩ (B3 \B2).

2.5.2 Defining the shifted functions

We define, for s ∈ [0, 1], t ∈ [−t1, t1] where t1 > 0 is to be chosen and all
ε > 0 sufficiently small, functions vt,s

ε ∈ W 1,2(N) with both paths
t ∈ [−t1, t1] → vt,s

ε ∈ W 1,2(N)

s ∈ [0, 1] → vt,s
ε ∈ W 1,2(N)

continuous in W 1,2(N). The functions vt,s
ε will be defined so that the fol-

lowing properties hold for all s ∈ [0, 1], t ∈ [−t1, t1] and ε > 0 sufficiently
small 

vt,1
ε = Hε ◦ (d±

M
− t) on N

v0,s
ε = vε on N

vt,0
ε = vε in Br0(p) ⊂ B1

, (2.40)

and in such a way that, for some E(ε) → 0 as ε → 0, we have

Fε,λ(vt,s
ε ) ≤ Fε,λ(vε) + E(ε).

Furthermore, we will show in Lemma 2.4 of Subsection 2.5.3 that there
exists 0 < t0 < t1 and η > 0 such that for all s ∈ [0, 1] and ε > 0
sufficiently small we have

Fε,λ(v±t0,s
ε ) ≤ Fε,λ(vε) − η + E(ε).
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Finally, in Lemma 2.5 of Subsection 2.5.4 we will show that for t > t0 we
have

Fε,λ(v±t
ε ) ≤ Fε,λ(v±t0,1

ε ) ≤ Fε,λ(vε) − η + E(ε).

These upper bounds on the energy along the paths provided by the func-
tions vt,s

ε will be calculated explicitly in Subsection 2.5.3. Note that these
paths of functions, along with their upper energy bounds, are precisely
the shifted functions sketched in Step 2 of Subsection 2.1.3.

Thus, by assuming the above holds, when these paths are combined
with those provided in Subsection 2.5.5, which change the shifted func-
tions vt,0

ε only in Br0(p) to decrease their energy, we construct a path
from aε to bε in W 1,2(N) whose energy along the path remains bounded
strictly below Fλ(E). We now proceed to define the vt,s

ε explicitly.

Consider the balls B1 ⊂⊂ B2 ⊂⊂ B3 ⊂⊂ B4 centred at p ∈ M as
specified in Subsection 2.5.1. Let K = M ∩B4 \B1, which is compact in
M , and fix cK = cM∩B4\B1

> 0 by the reasoning in Remark 2.11; we then
have that K × (−cK , cK) ⊂ VM is a two-sided tubular neighbourhood of
K = M ∩B4 \B1 in N under the map F . Note that we have

F (K × (−cK , cK)) ∩ (Sing(M) ∪ Sd
M

) = ∅

by the choice of cK > 0, and as K ⊂ K̂ we ensure that cK ≤ c
K̂

where
c

K̂
> 0 is as chosen in Subsection 2.5.1.

For the value of r > 0, balls, Bi = Br0+ir(p) and annulus, A =
M ∩ (B3 \ B1), as chosen in subsection 2.5.1 we define the following
Lipschitz function on M

f(y) =


1 if y ∈ M \B3

0 if y ∈ M ∩B2

1
r
(distN(y, p) − r0 − 2r) if y ∈ A

; (2.41)

thus we ensure that 0 ≤ f ≤ 1 and proceed to set

fs(x) = s+ (1 − s)f(x).

Recall, from Remark 2.12, the definition of the smooth projection, Π, to
M defined on the set N \ (Sing(M) ∪ Sd

M
). Fix a choice of t1 > 0 and

ε̃ > 0 sufficiently small to ensure that 2εΛε + t1 < min{cK ,
r
2}, for all

0 < ε < ε̃. We now define, for t ∈ [−t1, t1], s ∈ [0, 1] and 0 < ε < ε̃, the
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functions

vt,s
ε (x) =



Hε(d±
M

(x) − tfs(Π(x)))) if x ∈ F (K × [−cK , cK ])

Hε(d±
M

(x) − ts) if x ∈ Br0+ 3r
2

(p)

Hε(d±
M

(x) − t) if x ∈ N \Br0+ 7r
2

(p)

1 if x ∈ E ∩ {d±
M
> 2εΛε + t1}

−1 if x ∈ (N \ E) ∩ {d±
M
< −2εΛε − t1}

.

Note then that by the above definition of the functions vt,s
ε we ensure

that (2.40) holds as desired.

We now show that the vt,s
ε are well defined Lipschitz functions on N

so that in particular, as

F (A × [−2ε̃Λε̃ − t1, 2ε̃Λε̃ + t1]) ⊂⊂ Br0+ 7r
2

(p) \Br0+ 3r
2

(p)

(which is guaranteed as we ensure 2ε̃Λε̃ + t1 <
r
2 by our choices of t1 > 0

and ε̃ > 0) we may express them simply as

vt,s
ε (x) = Hε(d±

M
(x) − tfs(Π(x))) on N \ (Sing(M) ∪ Sd

M
). (2.42)

Note here that we are using the fact that the set Sing(M) ∪Sd
M

has zero
Hn+1 measure by the definition of M and the rectifiability arguments
for Sd

M
as contained in Subsections 2.1.1 and 2.3.2 respectively. We

will exploit this characterisation of the functions vt,s
ε directly in order to

compute their upper energy bounds in Subsection 2.5.3.

Note that if x ∈ Br0+ 7r
2

(p) \ Br0+ 3r
2

(p) and |d±
M

| ≤ 2εΛε + t1 then by
the triangle inequality we see that x ∈ F (K × [−cK , cK ]). We have that
both v

t,s
ε ≡ 1 in F (K × [2ε̃Λε̃ + t1, cK ])

vt,s
ε ≡ −1 in F (K × [−cK ,−(2ε̃Λε̃ + t1)])

Combining these two facts with the fact that f is Lipschitz we see that
the vt,s

ε are in fact Lipschitz functions in the set Br0+ 7r
2

(p) \Br0+ 3r
2

(p).

Noting that

F (A × [−2ε̃Λε̃ − t1, 2ε̃Λε̃ + t1]) ⊂⊂ Br0+ 7r
2

(p) \Br0+ 3r
2

(p)
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as 2ε̃Λε̃ + t1 <
r
2 , we have by definition of f that

v
t,s
ε = Hε(d±

M
(x) − ts) if x ∈ Br0+ 3r

2
(p) ∩ F (K × [−cK , cK ])

vt,s
ε = Hε(d±

M
(x) − t) if x ∈ (N \Br0+ 7r

2
(p)) ∩ F (K × [−cK , cK ])

.

Combining the above two paragraphs, we conclude that the vt,s
ε are indeed

well defined continuous functions on N . It only remains to prove that
they are Lipschitz.

As noted in the above paragraph, the functions vt,s
ε are Lipschitz

in Br0+ 7r
2

(p) \ Br0+ 3r
2

(p). Furthermore, in the sets N \ Br0+ 7r
2

(p) and
Br0+ 3r

2
(p) the vt,s

ε are Lipschitz functions by definition (as on these sets
vt,s

ε = Hε(d±
M

(x) − t) and vt,s
ε = Hε(d±

M
(x) − ts) respectively). In conclu-

sion we have that the vt,s
ε are well defined continuous functions on N that

are Lipschitz on each of the three sets Br0+ 7r
2

(p)\Br0+ 3r
2

(p), N \Br0+ 7r
2

(p)
and Br0+ 3r

2
(p); concluding that the vt,s

ε are indeed well defined Lipschitz
functions on N . In particular, we have that the vt,s

ε ∈ W 1,2(N). We
now proceed to prove upper energy bounds and show that these shifted
functions form continuous paths in W 1,2(N).

2.5.3 Energy and continuity of the shifted functions

We now calculate an upper bound on the energy of the shifted functions
vt,s

ε for t ∈ [t0, t0], where 0 < t0 ≤ t1 is to be chosen, all s ∈ [0, 1]
and ε > 0 sufficiently small. The calculation method employed here is
similar to those in [BW24, Sections 4, 6.1 and 7.1]. Though these calcu-
lations appear technically involved, they really are the diffuse analogue
of the bounds sketched geometrically for the shifted functions in Step 2
of Subsection 2.1.3.

Lemma 2.4. There exists t0 ∈ (0, t1) so that for all t ∈ [−t0, t0], s ∈ [0, 1]
and ε > 0 sufficiently small we have that

Fε,λ(vt,s
ε ) ≤ Fε,λ(vε) + E(ε)

where E(ε) → 0 as ε → 0. Furthermore, we have that, for all ε > 0
sufficiently small there exists

η = m

8 Hn(M)t20 > 0

such that for all s ∈ [0, 1] we have

Fε,λ(v±t0,s
ε ) ≤ Fε,λ(vε) − η.
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Proof. We denote, for (x, a) ∈ VM ,

v̂t,s
ε ((x, a)) = vt,s

ε (F (x, a))

so that, as Π ◦ F = F ◦ ΠVM
from the constructions in Remark 2.12, we

have by the expression (2.42) that

v̂t,s
ε (x, a) = Hε(a− tfs(F (ΠVM

(x, a)))) on VM . (2.43)

Note that by the definitions in (2.37) and (2.41) and the fact that f is
constant outside of A we have for points (x, a) ∈ VM that

∇
(
fs(F (ΠVM

(x, a)))
)

= 1−s
r

∇h(x, a) if x ∈ A

∇
(
fs(F (ΠVM

(x, a)))
)

= 0 if x ∈ M \ A
.

We then compute by the generalised Gauss’ Lemma, see for example
[Gra04, Chapter 2.4], that the quantity |∇v̂t,s

ε (x, a)|2(x,a) is equal to

(
(Hε)′(a− tfs(x)

)2
(

1 + (1 − s)2t2

r2 |∇h(x, a)|2(x,a)χA×R(x, a)
)
, (2.44)

where here χA×R is the indicator function for the set A × R on VM .

Using the co-area formula (slicing with a) and Fubini’s Theorem we
have, noting that we have multiplied the energy by the constant 2σ for
convenience and working in the coordinates VM , that

2σFε,λ(vt,s
ε ) =

∫
VM

eε(v̂t,s
ε ) − σλv̂t,s

ε dHn+1
F ∗g

=
∫

VM

ε

2 |∇v̂t,s
ε |2 + W (v̂t,s

ε )
ε

− σλv̂t,s
ε dHn+1

F ∗g (x, a)

=
∫

VM

[
ε

2
(
(Hε)′(a− tfs(x))

)2
+ W (Hε(a− tfs(x))

ε

− σλHε(a− tfs(x))
]
dHn+1

F ∗g (x, a)

+
∫

VM

[
ε

2
(
(Hε)′(a− tfs(x))

)2 (1 − s)2t2

r2 |∇h(x, a)|2(x,a)

· χA×R(x, a)
]
dHn+1

F ∗g (x, a)

=
∫

M

∫ σ+(x)

σ−(x)

[
eε

(
Hε(a− tfs(x))

)
− σλHε(a− tfs(x))

]
θ(x, a)da dHn(x)

+
∫

A

∫ σ+(x)

σ−(x)

[
ε

2
(
(Hε)′(a− tfs(x))

)2 (1 − s)2t2

r2 |∇h(x, a)|2(x,a)

· θ(x, a)
]
da dHn(x).
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Then, as vε = v0,s
ε for any s ∈ [0, 1] by (2.40), we have from the

above expression that we may write the difference in the two energies,
2σ(Fε,λ(vt,s

ε ) − Fε,λ(vε)) as

∫
M

∫ σ+(x)

σ−(x)

[
eε

(
Hε(a− tfs(x))

)
− eε

(
Hε(a)

)]
θ(x, a)da dHn(x) (2.45)

−
∫

M

∫ σ+(x)

σ−(x)
σλ

[
Hε(a− tfs(x)) − Hε(a)

]
θ(x, a)da dHn(x)

(2.46)

+
∫

A

∫ σ+(x)

σ−(x)

[
ε

2
(
(Hε)′(a− tfs(x))

)2 (1 − s)2t2

r2 |∇h(x, a)|2(x,a)

(2.47)

· θ(x, a)
]
da dHn(x).

(2.48)

We now analyse each of the terms appearing in the above energy dif-
ference separately. By massaging and rewriting each of the terms above
we will eventually be able to deduce our desired energy bound as simple
consequences of the underlying geometry of M .

First, we consider the term (2.45). Applying the Fundamental The-
orem of Calculus, Fubini’s Theorem and integrating by parts then, by
setting

θ(x, σ±(x)) = lim
a→σ±(x)

θ(x, a)

and recalling (2.18), we calculate for the term (2.45) that

∫
M

∫ σ+(x)

σ−(x)

[
eε

(
Hε(a− tfs(x))

)
− eε

(
Hε(a)

)]
θ(x, a)da dHn(x)

= −
∫ t

0

∫
M
fs(x)

∫ σ+(x)

σ−(x)
e′

ε

(
Hε(a− rfs(x))

)
θ(x, a)da dHn(x) dr

=
∫ t

0

∫
M
fs(x)

∫ σ+(x)

σ−(x)
eε(H

ε(a− rfs(x)))∂aθ(x, a)da dHn(x) dr

−
∫ t

0

∫
M
fs(x)eε

(
Hε(σ+(x) − rfs(x))

)
θ(x, σ+(x))da dHn(x) dr

+
∫ t

0

∫
M
fs(x)eε

(
Hε(σ−(x) − rfs(x))

)
θ(x, σ−(x))da dHn(x) dr

=
∫ t

0

∫
M
fs(x)

∫ σ+(x)

σ−(x)

[
eε(H

ε(a− rfs(x)))(λ−H(x, a))

· θ(x, a)
]
da dHn(x) dr

−
∫ t

0

∫
M
fs(x)

∫ σ+(x)

σ−(x)
λeε(H

ε(a− rfs(x)))θ(x, a)da dHn(x) dr

−
∫ t

0

∫
M
fs(x)eε

(
Hε(σ+(x) − rfs(x))

)
θ(x, σ+(x))da dHn(x) dr
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+
∫ t

0

∫
M
fs(x)eε

(
Hε(σ−(x) − rfs(x))

)
θ(x, σ−(x))da dHn(x) dr.

Note that in the last equality above we have both added and subtracted
the following term,

∫ t

0

∫
M
fs(x)

∫ σ+(x)

σ−(x)
λeε(H

ε(a− rfs(x)))θ(x, a)da dHn(x) dr,

in order to introduce the quantity λ−H(x, a) to the calculation.

We now consider the term
∫ t

0

∫
M
fs(x)

∫ σ+(x)

σ−(x)
eε(H

ε(a− rfs(x)))(λ−H(x, a))θ(x, a)da dHn(x) dr
(2.49)

separately, which we may control by the assumption of positive Ricci
curvature.

The fact that the σ± on M as defined in Subsection 2.3.1 and the vol-
ume elements, θ, on VM as defined in Subsection 2.3.2 are all continuous
functions, as well as the choice of radii (namely that B4 = Br0+4r(p) ⊂
B4r0(p) by the choice of r < 3

4r0) ensuring that (2.36) holds, ensure that
we may fix a compact set L ⊂ (M \ B4) along with a constant l > 0
sufficiently small so that |σ±(x)| > l for x ∈ L and such that

Hn({(x, l) ∈ VM | x ∈ L}) > Hn(M)
2 . (2.50)

Note that as L ∩ B4 = ∅ we have that f(x) = 1 (and thus fs(x) = 1 by
definition) for all x ∈ L.

The relation (2.18) combined with (2.20) for the volume elements,
θ(x, s), on VM in Subsection 2.3.2 ensure that for small positive values of
s the volume elements are strictly decreasing (here we are implicitly using
the assumption that λ ≥ 0 by Subsection 2.1.2/Remark 2.6). Therefore
we ensure that for some fixed 0 < t0 ≤ min{l, t1, 2d(N)} sufficiently small
we have that θ(x, a) ≥ θ(x, l) for all a ∈ [−t0, t0].

Again by (2.20) (relying on the positive Ricci curvature assumption)
and the above paragraph we thus have, for x ∈ L, that

(λ−H(x, a))θ(x, a) ≤ −maθ(x, l) if a ∈ [0, t0]

(λ−H(x, a))θ(x, a) ≥ −maθ(x, l) if a ∈ [−t0, 0]
.

With these inequalities and (2.50) we compute for t ∈ [−t0, t0] it holds
that, using (2.27), fs ≤ 1 and the fact that eε(H

ε(a − r)) 6= 0 only for
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values a ∈ (r − 2εΛε, r + 2εΛε), we have

(2.49) ≤ −Eε(H
ε)
[
mσ

2 Hn(M)t2 − 2εΛεmσHn(M)t
]

≤ −(1 − βε2)
[
mσ

2 Hn(M)t2 − 2εΛεmσHn(M)t
]
.

Second, consider the term (2.46). By applying the Fundamental Theorem
of Calculus and Fubini’s Theorem we rewrite the term as

(2.46) = −
∫

M

∫ σ+(x)

σ−(x)
σλ

[
Hε(a− tfs(x)) − Hε(a)

]
θ(x, a)da dHn(x)

=
∫ t

0

∫
M
fs(x)

∫ σ+(x)

σ−(x)
σλ(Hε)′(a− rfs(x))θ(x, a)da dHn(x) dr.

Third, we focus on the terms (2.47)/(2.48). Using (2.22), (2.27), (2.38),
(2.39) and noting that s ∈ [0, 1], we see that

(2.47)/(2.48) ≤ 2σt2
Hn(A)C2

he
λ2
2m

r2

 Eε(H
ε) ≤ mσ

4 Hn(M)t2(1 + βε2).

We may now simplify the terms (2.45) to (2.48) appearing in the differ-
ence of the energies as computed above to see that for t ∈ [−t0, t0] we
have that 2σ(Fε,λ(vt,s

ε ) − Fε,λ(vε)) is

≤ −(1 − βε2)
[
mσ

4 Hn(M)t2 − 2εΛεmσHn(M)t
]

+ βε2mσ

2 Hn(M)t2

(2.51)

+
∫ t

0

∫
M
fs(x)

∫ σ+(x)

σ−(x)
σλ(Hε)′(a− rfs(x))θ(x, a)da dHn(x) dr (2.52)

−
∫ t

0

∫
M
fs(x)

∫ σ+(x)

σ−(x)
λeε(H

ε(a− rfs(x)))θ(x, a)da dHn(x) dr (2.53)

−
∫ t

0

∫
M
fs(x)eε

(
Hε(σ+(x) − rfs(x))

)
θ(x, σ+(x))da dHn(x) dr (2.54)

+
∫ t

0

∫
M
fs(x)eε

(
Hε(σ−(x) − rfs(x))

)
θ(x, σ−(x))da dHn(x) dr. (2.55)

The objective now is to show that the sum of the terms (2.52) to (2.55)
are errors uniformly small in ε. Loosely, we will show that the sum of
these terms is bounded by a function E(ε) → 0 as ε → 0 in order to
obtain our desired upper bound for the difference in energies.

We first we treat (2.52) and (2.53) together. To this end we define
the function mε(rfs(x), x) by

max
a∈[rfs(x)−2εΛε,rfs(x)+2εΛε]

θ(x, a) − min
a∈[rfs(x)−2εΛε,rfs(x)+2εΛε]

θ(x, a),
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so that by (2.22), 0 ≤ mε(rfs(x), x) ≤ maxa∈R θ(x, a) ≤ e
λ2
2m and by the

continuity of the volume elements we have that

mε(rfs(x), x) → 0 as ε → 0.

Hence, by applying the Dominated Convergence Theorem we see that

Mε(t) = 2σλ
∫

M

∫ t

0
mε(rfs(x), x)dHn(x) dr → 0 as ε → 0.

With this definition we ensure that the functions Mε(t) are continuous.

Noting that whenever 0 < ε̃ < ε we have that

0 ≤ mε̃(rfs(x), x) ≤ mε(rfs(x), x)

we may apply Dini’s Theorem (as the Mε(t) are thus increasing/decreas-
ing, hence monotone, in ε for positive/negative values of t ∈ R respec-
tively) to the functions Mε(t) to conclude that

Mε → 0 uniformly on compact subsets of R (2.56)

Using the above we compute that for (2.52) and (2.53), as |fs|, |H
ε| ≤ 1,

(2.27) and by Fubini’s Theorem, we have, for t ∈ [−t0, t0], that
∣∣∣∣∣
∫ t

0

∫
M
fs(x)

∫ σ+(x)

σ−(x)
σλ(Hε)′(a− rfs(x))θ(x, a)

− λeε(H
ε(a− rfs(x)))θ(x, a)da dHn(x) dr

∣∣∣∣∣
≤
∫ t

0

∫
M

∣∣∣∣∣
∫ σ+(x)

σ−(x)
σλ(Hε)′(a− rfs(x))θ(x, a)

− λeε(H
ε(a− rfs(x)))θ(x, a)da

∣∣∣∣∣dHn(x) dr

≤
∫ t

0

∫
M

∫ σ+(x)

σ−(x)

[
σλ
(

max
a∈[rfs(x)−2εΛε,rfs(x)+2εΛε]

θ(x, a)
)

(Hε)′(a− rfs(x))da

− λ
(

min
a∈[rfs(x)−2εΛε,rfs(x)+2εΛε]

θ(x, a)
)
eε(H

ε(a− rfs(x)))da
]
dHn(x) dr

≤ 2σλ
∫ t

0

∫
M
mε(rfs(x), x)dHn(x) dr + 2σλHn(M)e λ2

2m t0βε
2

≤ max
t∈[−2d(N),2d(N)]

Mε(t) + 2σλHn(M)e λ2
2m t0βε

2.

From this we conclude the following bound

|(2.52) + (2.53)| ≤ max
t∈[−2d(N),2d(N)]

Mε(t) + 2σλHn(M)e λ2
2m t0βε

2. (2.57)
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Finally we work on (2.54) and (2.55). If t ≥ 0 then as each of the func-
tions fs, θ and eε are non-negative, we ensure that (2.54) ≤ 0. Similarly,
if t ≤ 0 then we may argue analogously to ensure that (2.55) ≤ 0. As
|fs| ≤ 1 by definition, θ ≤ e

λ2
2m by (2.22) and eε(H

ε(σ±(x) − rfs(x)) 6= 0
only when σ±(x) ∈ (rfs(x) − 2εΛε, rfs(x) + 2εΛε) by definition of Hε, we
conclude that

(2.54) ≤ (2σ + βε2)t0e
λ2
2m Hn({x ∈ M | σ+(x) ≤ 2εΛε} (2.58)

and

(2.55) ≤ (2σ + βε2)t0e
λ2
2m Hn({x ∈ M | σ−(x) ≥ −2εΛε}. (2.59)

Now, as Hn({x ∈ M |σ±(x) = 0}) = 0 by the Dominated Convergence
Theorem we are able to conclude that both

Hn({x ∈ M | σ+(x) ≤ 2εΛε} → 0 as ε → 0 (2.60)

and
Hn({x ∈ M | σ−(x) ≥ −2εΛε} as ε → 0. (2.61)

We can combine all of our above bounds to conclude that for t ∈ [−t0, t0]
we have

Fε,λ(vt,s
ε ) ≤ Fε,λ(vε) − m

8 Hn(M)t2 + E(ε).

Here in the above we are utilising (2.51), (2.57), (2.58), (2.59) and the
fact that t0 ≤ 2d(N) in order to define

2σE(ε) = 3mσ
4 Hn(M)(2d(N))2βε2 + (1 − βε2) [2εΛεmσHn(M)(2d(N))]

+ max
t∈[−2d(N),2d(N)]

Mε(t) + 2σλHn(M)e λ2
2m (2d(N))βε2

+ (2σ + βε2)(2d(N))e λ2
2m Hn({x ∈ M | σ+(x) ≤ 2εΛε}

+ (2σ + βε2)(2d(N))e λ2
2m Hn({x ∈ M | σ−(x) ≥ −2εΛε}.

We ensure that we have E(ε) → 0 as ε → 0 by virtue of (2.56), (2.60)
and (2.61). This concludes the desired bound

Fε,λ(vt,s
ε ) ≤ Fε,λ(vε) + E(ε)

which holds for all t ∈ [−t0, t0], s ∈ [0, 1] and ε > 0 sufficiently small.

For the fixed energy drop for the functions v±t0,s
ε we set once and for
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all
η = m

8 Hn(M)t20.

Thus we conclude, taking ε > 0 sufficiently small so that E(ε) < η, the
desired energy drop for these functions.

We now conclude this subsection by showing that both of the paths
t ∈ [−t1, t1] → vt,s

ε ∈ W 1,2(N)

s ∈ [−1, 1] → vt,s
ε ∈ W 1,2(N)

are continuous inW 1,2(N) for fixed s ∈ [0, 1] and t ∈ [−t1, t1] respectively.
Recall that the functions F , ΠVM

and fs are all continuous. For each t ∈
[−t1, t1] consider that for values s, s̃ ∈ [0, 1] we have, by the Dominated
Convergence Theorem, the fact that |Hε| ≤ 1 and the expression in (2.43)
that

||vt,s
ε − vt,s̃

ε ||2L2(N) =
∫

VM

|v̂t,s
ε − v̂t,s̃

ε |2dHn+1
F ∗g

=
∫

VM

|Hε(a− tfs(F (ΠVM
(x, a))))

− Hε(a− tfs̃(F (ΠVM
(x, a))))|2dHn+1

F ∗g (x, a)
→ 0 as s̃ → s.

Furthermore, we see that by the Dominated Convergence Theorem, the
fact that Hε is smooth, the bound (2.38), as well as the expressions in
(2.43) and (2.44) we have that

||∇vt,s
ε − ∇vt,s̃

ε ||2L2(N) =
∫

VM

|∇v̂t,s
ε − ∇v̂t,s̃

ε |2dHn+1
F ∗g

≤
∫

VM

(
(Hε)′

(
a− tfs(F (ΠVM

(x, a)))
)

− (Hε)′
(
a− tfs̃(F (ΠVM

(x, a)))
))2

dHn+1
F ∗g (x, a)

+
∫

VM

t2
∣∣∣∇(fs̃(F (ΠVM

(x, a)))
)
(Hε)′

(
a− tfs̃(F (ΠVM

(x, a)))
)

− ∇
(
fs(F (ΠVM

(x, a)))
)
(Hε)′

(
a− tfs(F (ΠVM

(x, a)))
)∣∣∣2dHn+1

F ∗g (x, a)

→ 0 as s̃ → s.

Hence, for fixed t ∈ [−t1, t1], the path

s ∈ [0, 1] → vt,s
ε is continuous in W 1,2(N). (2.62)

Analogous arguments to those above show that, for fixed s ∈ [0, 1], the
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path
t ∈ [−t1, t1] → vt,s

ε is continuous in W 1,2(N). (2.63)

2.5.4 Sliding the one-dimensional profile

We now define, for t ∈ R, the functions vt
ε ∈ W 1,2(N) by setting

vt
ε(x) = Hε(d±

M
(x) − t).

Note then that, by (2.40), for t ∈ [−t1, t1] we have vt
ε = vt,1

ε . By the
continuity of translations on Lp for 1 ≤ p < ∞ we have that vt

ε ∈ W 1,2(N)
for all t ∈ R, the path

t ∈ R → vt
ε is continuous in W 1,2(N)

and that v0
ε = vε. By choosing ε > 0 sufficiently small to ensure that

2εΛε < d(N) we have both
v

t
ε = −1 on N for t ≥ 2d(N)

vt
ε = +1 on N for t ≤ −2d(N).

We now show that, using the assumption of positive Ricci curvature, the
path provided by the functions vt

ε, along with the energy reducing paths
from −1 and +1 provided by negative gradient flow of the energy to aε

and bε respectively, provides a “recovery path” for the value Fλ(E); this
path connects aε to bε, passing through vε, with the maximum value of
the energy along this path approximately Fλ(E). Note that these paths
of functions, along with their upper energy bounds, are precisely the
sliding functions sketched in Step 2 of Subsection 2.1.3.

Lemma 2.5. For all t ∈ [−2d(N), 2d(N)] we have that

Fε,λ(vt
ε) ≤ Fε,λ(vε) + E(ε)

where E(ε) → 0 as ε → 0 is as in Lemma 2.4. Furthermore, we have
that

Fε,λ(v±t̃
ε ) ≤ Fε,λ(v±t

ε ) + E(ε),

whenever t̃ ≥ t ≥ 0; thus, in particular for t > t0 we have

Fε,λ(v±t
ε ) ≤ Fε,λ(vε) − η + E(ε).

Proof. We compute in an identical manner to the proof of Lemma 2.4,
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writing

2σFε,λ(vt
ε) =

∫
M

∫ σ+(x)

σ−(x)

[
eε

(
Hε(a− t)

)
− σλHε(a− t)

]
θ(x, a)da dHn(x).

Assuming that either t̃ ≥ t > 0 or t̃ ≤ t < 0, we compute the difference
of energies as

2σ(Fε,λ(vt̃
ε) − Fε,λ(vt

ε))

=
∫

M

∫ σ+(x)

σ−(x)

[
eε

(
Hε(a− t̃)

)
− eε

(
Hε(a− t)

) ]
θ(x, a)da dHn(x)

−
∫

M

∫ σ+(x)

σ−(x)
σλ

[
Hε(a− t̃) − Hε(a− t)

]
θ(x, a)da dHn(x).

Similarly to Lemma 2.4 this yields, noting that λ − H(x, a) ≤ 0 for all
a ∈ R by the assumption of positive Ricci curvature (2.20), the expression

2σ(Fε,λ(vt̃
ε) − Fε,λ(vt

ε))

≤
∫ t̃

t

∫
M

∫ σ+(x)

σ−(x)
σλ(Hε)′(a− r)θ(x, a)da dHn(x) dr

−
∫ t̃

t

∫
M

∫ σ+(x)

σ−(x)
λeε(H

ε(a− r))θ(x, a)da dHn(x) dr

−
∫ t̃

t

∫
M
eε

(
Hε(σ+(x) − r)

)
θ(x, σ+(x))da dHn(x) dr

+
∫ t̃

t

∫
M
eε

(
Hε(σ−(x) − r)

)
θ(x, σ−(x))da dHn(x) dr.

Near identical computations to those in the proof of Lemma 2.4 (pre-
cisely those computations for the error terms (2.52) and (2.53) giving
the bound (2.57), as well the bounds on (2.58) and (2.59) giving (2.60),
(2.61) respectively) yield upper bounds on the the above four terms and
show that

Fε,λ(vt̃
ε) ≤ Fε,λ(vt

ε) + E(ε),

where the expression for E(ε) is identical to that of Lemma 2.4 (here we
are exploiting the fact that t ∈ [−2d(N), 2d(N)]). Finally, using the fact
that v0

ε = vε, v±t0
ε = v±t0,1

ε and the upper energy bounds from Lemma
2.4, we conclude the various desired upper bounds.

2.5.5 Paths to local energy minimisers

Recall that for the one-dimensional profile, vε = Hε ◦ d±
M

we have, by
Lemma 2.4 and (2.40), for a fixed η > 0 and some r0 > 0, as chosen in
Subsection 2.5.1, that there exists a t0 > 0 and functions vt,0

ε ∈ W 1,2(N)
for t ∈ [−t0, t0], with the following properties:
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• vt,0
ε = vε in Br0(p).

• Fε,λ(vt,0
ε ) ≤ Fε,λ(vε) + E(ε), where E(ε) → 0 as ε → 0.

• Fε,λ(v±t0,0
ε ) ≤ Fε,λ(vε) − η.

We now produce the local functions as sketched geometrically in Step
2 of Subsection 2.1.3. These functions are defined so that they remain
constant outside of Br0(p) and provide a continuous path in W 1,2(N)
from vε to gε in the ball Br0(p) such that the maximum energy along this
path increases by at most η

2 above Fε,λ(vt,0
ε ); loosely speaking, this may

be seen as a diffuse analogue of [CLS22, Lemma 1.12] which concerns the
construction of homotopy sweep-outs with controlled area.

Proposition 2.3. For η > 0 as above there exists, for some R ∈ (0, r0)
and ε > 0 sufficiently small, functions gt,s

ε ∈ W 1,2(N), for each t ∈
[−t0, t0] and s ∈ [−2, 2], such that the following properties hold:

• For each t ∈ [−t0, t0] we have gt,−2
ε = vt,0

ε on N and gt,s
ε = vt,0

ε on
N \BR(p) for all s ∈ [−2, 2].

• For each t ∈ [−t0, t0] we have gt,2
ε = gε in BR(p) where gε ∈ Aε, R

2
(p)

arises from a choice of minimiser in Lemma 2.2 for ρ = R
2 and

q = p.

• For each s ∈ [−2, 2], t ∈ [−t0, t0] → gt,s
ε is a continuous path in

W 1,2(N).

• For each t ∈ [−t0, t0], s ∈ [−2, 2] → gt,s
ε is a continuous path in

W 1,2(N).

• For each t ∈ [−t0, t0] and s ∈ [−2, 2] we have

Fε,λ(gt,s
ε ) ≤ Fε,λ(vt,0

ε ) + η

2 .

Furthermore, if the functions vε are such that Fε,λ(vε) ≥ Fε,λ(gε) + τ for
some τ > 0, we have for each t ∈ [−t0, t0] that

Fε,λ(gt,2
ε ) ≤ Fε,λ(vt,0

ε ) − τ.

Remark 2.18. The paths exhibited in Proposition 2.3 are “local” in the
sense that they remain constant outside of BR(p), and additionally do
not require the assumption of positive Ricci curvature of N . Specifically,
in any ambient manifold (without any curvature assumption), given an
η > 0 (not necessarily as fixed by Lemma 2.4) and f ∈ W 1,2(N) such
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that |f | ≤ 1 and with f equal to vε in a ball bi-Lipschitz diffeomorphic to
the Euclidean ball of the same radius, a path as in Proposition 2.3 may
be constructed (replacing vt,0

ε by f in the conclusions) for a sufficiently
small R > 0.

Proof. Given some η > 0 we choose R > 0 sufficiently small to ensure
that

2n+2Rnωn + CpR
n + 2λVolg(BR

2
(p)) < η

4 , (2.64)

where here ωn is the volume of the n-dimensional unit ball. We then po-
tentially re-choose a smaller 0 < R ≤ Rl (with Rl as defined in Subsection
2.1.1), so that the closed ball BR(p) is 2-bi-Lipschitz diffeomorphic, via
some smooth geodeisic normal coordinate chart, ψ, to the Euclidean ball,
B

Rn+1

R (0) of radius R, with ψ(p) = 0.

We consider a sweep-out of BRn+1

R (0) by the horizontal planes, Πl,
defined for l ∈ [−1, 1] by

Πl =
{
y ∈ B

Rn+1

R (0)
∣∣∣∣ y = (y1, . . . , yn, lR)

}
.

For each l ∈ [−1, 1], the plane Πl is the intersection of BRn+1

R (0) with the
plane {yn+1 = lR}. We consider the images, Pl = ψ(Πl) in N . These
images, Pl, then sweep-out the closure of BR(p), BR(p) in the sense that

BR(p) = ∪l∈[−1,1]Pl

Pl ∩ Ps = ∅ for l 6= s
.

Note that each plane Πl divides the ball BRn+1

R (0) into two disjoint con-
nected regions given by


{
y ∈ B

Rn+1

R (0) | yn+1 > lR
}

{
y ∈ B

Rn+1

R (0) | yn+1 < lR
} .

We then denote the images of these sets under the diffeomorphism ψ in
BR(p) as 

El = ψ
({
y ∈ B

Rn+1

R (0) | yn+1 > lR
})

Fl = ψ
({
y ∈ B

Rn+1

R (0) | yn+1 < lR
})

respectively. Note then that BR(p) = El ∪ Fl ∪ Pl, where the unions are
all mutually disjoint.

We now define, for l ∈ [−1, 1], the functions pl
ε ∈ W 1,2(BR(p)) given
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by
pl

ε = Hε(d±
Pl

),

where here, for dPl
the usual distance function on N to the set Pl, we

define the Lipschitz signed distance to Pl by

d±
Pl

=


+dPl

, if x ∈ El

0, if x ∈ Pl

−dPl
, if x ∈ Fl

.

As the Lipschitz images of the planes, Pl, vary continuously in the Haus-
dorff distance as l ∈ [−1, 1] varies, the functions pl

ε vary continuously in
W 1,2(BR(p)) with respect to l ∈ [−1, 1] (c.f. [Gua18, Proposition 9.2]).

Applying Lemma 2.2, for the choices ρ = R
2 and q = p, for each ε > 0

sufficiently small we produce a local energy minimiser gε ∈ W 1,2(N).
In particular, this function agrees with the one-dimensional profile, vε,
outside of BR

2
(p) and is such that Fε,λ(gε) ≤ Fε,λ(vε).

For l ∈ [−1, 1] we define on the ball BR(p) the functions

ȟl
ε(x) = max

{
min{vε(x), pl

ε(x)},min{gε(x), vε(x)}
}
,

and
ĥl

ε(x) = max
{

min{gε(x), pl
ε(x)},min{gε(x), vε(x)}

}
.

With these definitions, the above two functions replicate the transition
behaviour described by Remark 2.5 and depicted in Figure 2.3 in Step 2 of
Subsection 2.1.3. One can then readily check that these functions satisfy,
for ε > 0 sufficiently small so that 2εΛε <

R
2 , the following properties



ȟ−1
ε = vε

ȟ1
ε = ĥ1

ε = min{gε, vε}

ĥ−1
ε = gε

|ȟl
ε| ≤ 1

|ĥl
ε| ≤ 1

.

For two functions f, g ∈ W 1,2(BR(p)) we may write
max{f, g} = max{f − g, 0} + g = 1

2(|f − g| + (f − g)) + g

min{f, g} = min{f − g, 0} + g = 1
2(|f − g| − (f − g)) + g

,

from which we conclude that max{f, g},min{f, g} ∈ W 1,2(N). We also
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note that if t → ft is a continuous path in W 1,2(BR(p)), then the paths
t → max{ft, 0} and t → min{ft, 0} are continuous in W 1,2(BR(p)). To
see this we write

max{ft, 0} − max{fs, 0} = 1
2((|ft| − |fs|) + (ft − fs))

which, by applying reverse triangle inequality, may be controlled by
the W 1,2(BR(p)) norm of ft − fs; showing continuity of the path in
W 1,2(BR(p)). The proof for the W 1,2(BR(p)) continuity of the path
t → min{ft, 0} is identical. With the above in mind, we have that
ȟl

ε, ĥ
l
ε ∈ W 1,2(BR(p)) for each l ∈ [−1, 1], and that both paths

l ∈ [−1, 1] → ȟl
ε

l ∈ [−1, 1] → ĥl
ε

are continuous in W 1,2(BR(p)).

We have that vε = gε on BR(p)\BR
2
(p) (as by construction we ensure

that vε = gε on N \ BR
2
(p)) and hence ĥl

ε = ȟl
ε = vε on BR(p) \ BR

2
(p)

also. Thus we may extend these functions on BR(p) to two functions on
the whole of N , ǧt,l

ε , ĝ
t,l
ε ∈ W 1,2(N) for t ∈ [−t0, t0] and l ∈ [−1, 1] by

defining

ǧt,l
ε (x) =

v
t,0
ε (x), if x ∈ N \BR(p)

ȟl
ε(x), if x ∈ BR(p)

,

and

ĝt,l
ε (x) =

v
t,0
ε (x), if x ∈ N \BR(p)

ĥl
ε(x), if x ∈ BR(p)

.

This is well defined as we have that vt,0
ε = vε on the set BR(p), hence

in defining the functions above we have only edited the functions vt,0
ε in

BR(p) and thus keep them in W 1,2(N). By the above arguments, as both
paths l ∈ [−1, 1] → ȟl

ε

l ∈ [−1, 1] → ĥl
ε

are continuous in W 1,2(BR(p)), we ensure that the four paths


t ∈ [−t0, t0] → ǧt,l
ε

l ∈ [−1, 1] → ǧt,l
ε

t ∈ [−t0, t0] → ĝt,l
ε

l ∈ [−1, 1] → ĝt,l
ε
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are continuous in W 1,2(N) (here we are implicitly using the fact that the
path, t ∈ [−t0, t0] → vt,0

ε , of shifted functions is continuous in W 1,2(N),
as shown in Subsection 2.5.3)

Note that then as ȟ1
ε = ĥ1

ε = min{gε, vε} we have for each t ∈ [−t0, t0]
that ǧt,1

ε = ĝt,−1
ε = min{gε, vε} in BR(p). We thus define, for s ∈ [−2, 2],

the functions

gt,s
ε =

ǧ
t,s+1, if s ∈ [−2, 0]

ĝt,s−1
ε , if s ∈ [0, 2]

,

so that in BR(p) we have


gt,0

ε = ǧt,1
ε = ĝt,−1

ε = min{gε, vε}

gt,−2
ε = ǧ0,−1

ε = vt,0
ε = vε

g0,2
ε = ĝ0,1

ε = gε

.

Furthermore, by the continuity of the paths mentioned above we have
that both of the paths

s ∈ [−2, 2] → gt,s
ε

t ∈ [−t0, t0] → gt,s
ε

are continuous in W 1,2(N).

We now show that we may bound the energy of all the functions gt,s
ε

above by Fε,λ(vt,0
ε ) plus errors depending only on the geometry of the

ball BR(p). As {gε 6= vε} ⊂ BR
2
(p) we note that gt,s

ε = vt,0
ε on N \BR

2
(p).

We then compute that, as ȟs+1
ε is always equal to one of gε, vε or ps+1

ε in
BR

2
(p), for s ∈ [−2, 0] we have

Fε,λ(gt,s
ε ) = 1

2σ

∫
N
eε(gt,s

ε ) − λ

2

∫
N
gt,s

ε

= 1
2σ

∫
N\B R

2
(p)
eε(vt,0

ε ) + 1
2σ

∫
B R

2
(p)
eε(ȟs+1

ε )

− λ

2

∫
N\B R

2
(p)
vt,0

ε − λ

2

∫
B R

2
(p)
ȟs+1

ε

= 1
2σ

∫
N\B R

2
(p)
eε(vt,0

ε ) + 1
2σ

∫
B R

2
(p)∩{ȟs+1

ε =vε}
eε(vε)

+ 1
2σ

∫
B R

2
(p)∩{ȟs+1

ε =gε}
eε(gε)

+ 1
2σ

∫
B R

2
(p)∩{ȟs+1

ε =ps+1
ε }

eε(ps+1
ε )
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− λ

2

∫
N\B R

2
(p)
vt,0

ε − λ

2

∫
B R

2
(p)
ȟs+1

ε

≤ 1
2σ

∫
N\B R

2
(p)
eε(vt,0

ε ) + 1
2σ

∫
B R

2
(p)
eε(vε)

+ 1
2σ

∫
B R

2
(p)
eε(gε) + 1

2σ

∫
B R

2
(p)
eε(ps+1

ε )

− λ

2

∫
N\B R

2
(p)
vt,0

ε − λ

2

∫
B R

2
(p)
ȟs+1

ε

= Eε(vt,0
ε ) + 1

2σ

∫
B R

2
(p)
eε(gε) + 1

2σ

∫
B R

2
(p)
eε(ps+1

ε )

− λ

2

∫
N\B R

2
(p)
vt,0

ε − λ

2

∫
B R

2
(p)
ȟs+1

ε

= Fε,λ(vt,0
ε ) + 1

2σ

∫
B R

2
(p)
eε(gε) + 1

2σ

∫
B R

2
(p)
eε(ps+1

ε )

+ λ

2

∫
B R

2
(p)

(vt,0
ε − ȟs+1

ε ),

where in the final line we have both added and subtracted the term
λ
2
∫

B R
2

(p) v
t,0
ε . Similarly for s ∈ [0, 2] we may compute that

Fε,λ(gt,s
ε ) ≤ Fε,λ(vt,0

ε ) + 1
2σ

∫
B R

2
(p)
eε(gε)

+ 1
2σ

∫
B R

2
(p)
eε(ps−1

ε ) + λ

2

∫
B R

2
(p)

(vt,0
ε − ĥs−1

ε ).

Thus, as for all l ∈ [−1, 1] we have |ȟl
ε| ≤ 1, |ĥl

ε| ≤ 1 and |vt,0
ε | ≤ 1, we

see that for each t ∈ [−t0, t0] and s ∈ [−2, 2]

Fε,λ(gt,s
ε ) ≤ Fε,λ(vt,0

ε ) + 1
2σ

∫
B R

2
(p)
eε(gε) (2.65)

+ sup
l∈(−1,1)

 1
2σ

∫
B R

2
(p)
eε(pl

ε)
+ λVolg(BR

2
(p)). (2.66)

Similarly, we note that as vε = gε on N \ BR
2
(p), |gε|, |vε| ≤ 1 on N and

Fε,λ(gε) ≤ Fε,λ(vε) by construction of gε, we have that

1
2σ

∫
B R

2
(p)
eε(gε) ≤ 1

2σ

∫
B R

2
(p)
eε(vε) + λVolg(BR

2
(p)).

and so by a similar co-area formula calculation to Subsection 2.3.3 (slicing
with d±

M
) and using (2.27) we see that

1
2σ

∫
B R

2
(p)
eε(vε) ≤ (1 + βε2)ess supa∈[−2εΛε,2εΛε]Hn({d±

M
= a} ∩BR(p))
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→ Hn(M ∩BR(p)) as ε → 0.

By the Euclidean volume growth of M in (2.35) we conclude that, for
sufficiently small ε > 0, we have

1
2σ

∫
B R

2
(p)
eε(gε) ≤ CpR

n + λVolg(BR
2
(p)) + η

8 . (2.67)

We now compute upper Eε bounds on the other terms appearing in
(2.65)/(2.66), namely those involving the functions pl

ε, in terms of the
geometry of N . Once again by applying the co-area formula, slicing with
d±

Pl
, and using (2.27) we see that for each l ∈ (−1, 1) we have

1
2σ

∫
B R

2
(p)
eε(pl

ε) = 1
2σ

∫
B R

2
(p)
eε(H

ε(d±
Pl

))

= 1
2σ

∫
R

∫
{d±

Pl
=a}∩B R

2
(p)
eε(H

ε(a))dHn da

= 1
2σ

∫
R

Hn({d±
Pl

= a} ∩BR
2
(p))eε(H

ε(a)) da

≤ (1 + βε2)ess supa∈[−2εΛε,2εΛε]Hn({d±
Pl

= a} ∩BR
2
(p)).

We now focus on bounding the term

ess supa∈[−2εΛε,2εΛε]Hn({d±
Pl

= a} ∩BR
2
(p))

from above independently of ε. Recall that Pl = ψ(Πl) where ψ is a
smooth 2-bi-Lipschitz map from B

Rn+1

R (0) to BR(p) and

Πl =
{
y ∈ B

Rn+1

R (0)
∣∣∣∣ y = (y1, . . . , yn, lR)

}
.

For l ∈ (−1, 1) we have that Πl is a smooth embedded n-dimensional
submanifold of BRn+1

R and hence its image, Pl, in N is a smooth embedded
n-dimensional submanifold of BR(p) ⊂ N .

We define the tubular hypersurface at distance s from Pl to be the
set

Pl(s) = {x ∈ N | ∃ a geodesic of length s meeting Pl orthogonally}.

Here we choose ε > 0 possibly smaller to ensure that 2εΛε <
R
2 , so that

we guarantee {|d±
Pl

| = a} ∩ BR
2
(p) ⊂ Pl(a) for all l ∈ (−1, 1) such that

BR
2
(p) ∩ Pl 6= ∅. We then apply the formula for the volume of a tubular

hypersurface (e.g. see [Gra04, Lemma 3.12/8.2]) to compute that, for
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each l ∈ (−1, 1) we have

Hn(Pl(s)) ≤
∫

Pl

∫
S0
θu(q, s)du dHn(q).

In the above we are adopting the notation that S0 is the 0 dimensional
unit sphere, and for u ∈ S0 we define θu(q, a) to be the Jacobian of the
exponential map, expq, at the point expq(au). Note then that for each
q ∈ Pl we have that θu(q, 0) = 1 and θu(q, a) → 1 as a → 0. For all ε > 0
sufficiently small we may ensure that θu(q, a) ≤ 2 for any q ∈ BR(p);
this may be seen by noticing that as the exponential map is smooth,
its Jacobian varies continuously in each of its variables and hence its
maximum, for a fixed a ∈ R on BR(p) × R, is achieved and converges to
1 as a → 0. Thus, we have that

Hn(Pl(a)) ≤ 4Hn(Pl).

Note that as ψ is 2-bi-Lipschitz we may control the measure of its image
(e.g. by applying [EG15, Theorem 2.8]) to see that

Hn(Pl) ≤ 2nHn(Πl) ≤ 2nRnωn,

where ωn is the volume of the n-dimensional unit ball. Hence, for all
l ∈ [−1, 1] and ε > 0 sufficiently small we have that

Hn(Pl(s)) ≤ 2n+2Rnωn.

We thus conclude that as {|d±
Pl

| = a} ∩ BR
2
(p) ⊂ Pl(a) for all l ∈ (−1, 1)

such that BR
2
(p) ∩ Pl 6= ∅ we have

ess supa∈[−2εΛε,2εΛε]Hn({d±
Pl

= a} ∩BR
2
(p)) ≤ 2n+2Rnωn,

and hence we deduce that

1
2σ

∫
B R

2
(p)
eε(pl

ε) ≤ (1 + βε2)2n+2Rnωn. (2.68)

Choosing ε > 0 again possibly smaller we ensure that

2n+2Rnωnβε
2 <

η

8 .

Recall that, given some η > 0, we chose R > 0 in (2.64) sufficiently small
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to ensure that

2n+2Rnωn + CpR
n + 2λVolg(BR

2
(p)) < η

4 .

Combining the above two bounds with (2.65), (2.66), (2.67) and (2.68)
we conclude that for each t ∈ [−t0, t0] and s ∈ [−2, 2] we have

Fε,λ(gt,s
ε ) ≤ Fε,λ(vt,0

ε ) + η

2 ,

for ε > 0 sufficiently small as desired.

We now establish the final part of the proposition. As {gε 6= vε} ⊂
BR

2
(p) we have gt,s

ε = vt,0
ε on N \ BR

2
(p), which combined with the fact

that in BR(p) we have both vt,0
ε = vε and gt,2

ε = gε, we thus observe that

Fε,λ(gt,2
ε ) = Fε,λ(vt,0

ε ) + (Fε,λ(gε) − Fε,λ(vε)).

Using this, if the functions vε are such that Fε,λ(vε) ≥ Fε,λ(gε) + τ for
some τ > 0, we therefore conclude that

Fε,λ(gt,2
ε ) ≤ Fε,λ(vt,0

ε ) − τ,

as desired.

2.6 Proof of Theorems 2.1, 2.2 and 2.3

We recall our setup before combining the results of the previous subsec-
tions to prove the main results of this chapter. Let (N, g) be a smooth
compact Riemannian manifold of dimension 3 or higher with positive
Ricci curvature. We then consider M ⊂ N a closed embedded hyper-
surface of constant mean curvature λ ∈ R, smooth away from a closed
singular set of Hausdorff dimension at most n − 7, as produced by the
one-parameter Allen–Cahn min-max in [BW20a], with constant prescrib-
ing function λ. In particular, the properties of M as stated in Subsection
2.1.1 hold with M arising as the reduced boundary of a Caccioppoli set,
E ⊂ N .

2.6.1 Proof of Theorem 2.3

Proof of Theorem 2.3. For each isolated singularity p ∈ Sing(M) we may
choose the radii r0, r and R as in Subsection 2.5.1 and Proposition 2.3 in
order to define the various paths constructed in Subsections 2.5.2, 2.5.4
and 2.5.5. We begin by assuming for contradiction that for gε ∈ Aε, R

2
(p),
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defined as in Lemma 2.2 (by setting ρ = R
2 and q = p), there exists a

τ > 0 such that
Fε,λ(vε) ≥ Fε,λ(gε) + τ,

for all ε > 0 sufficiently small. Then, using the various path constructions
in Section 2.5 as mentioned above, we define the following nine paths in
W 1,2(N):

• First, a path from +1 to the constant bε through constant functions,

s ∈ [1, bε] → s,

which, by the construction of the stable critical point bε through
the negative gradient flow of Fε,λ in Subsection 2.1.2, has

Fε,λ energy along the path ≤ Fε,λ(+1).

• Second, a path from +1 to v−t0
ε = v−t0,1

ε ,

t ∈ [−2d(N),−t0] → vt
ε,

which by Lemma 2.5 has

Fε,λ energy along the path ≤ Fε,λ(v−t0,1) ≤ Fλ(E) − η + E(ε).

This path varies continuously by the reasoning in Subsection 2.5.4.

• Third, a path from v−t0
ε = v−t0,1

ε to v−t0,0
ε = g−t0,−2

ε ,

s ∈ [0, 1] → v−t0,s
ε ,

which by Lemma 2.4 has

Fε,λ energy along the path ≤ Fε,λ(vε) − η.

This path varies continuously by (2.62).

• Fourth, a path from g−t0,−2
ε to g−t0,2

ε ,

s ∈ [−2, 2] → g−t0,s
ε ,

which by Proposition 2.3 and Lemma 2.4 has

Fε,λ energy along the path ≤ Fε,λ(vε) − η

2 .
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This path varies continuously by Proposition 2.3.

• Fifth, a path from g−t0,2
ε to gt0,2

ε ,

t ∈ [−t0, t0] → gt,2
ε ,

which by Proposition 2.3 and Lemma 2.4 has

Fε,λ energy along the path ≤ Fε,λ(vε) − τ + E(ε).

This path varies continuously by Proposition 2.3.

• Sixth, a path from gt0,−2
ε = vt0,0

ε to gt0,2
ε ,

s ∈ [−2, 2] → gt0,s
ε ,

which by by Proposition 2.3 and Lemma 2.4 has

Fε,λ energy along the path ≤ Fε,λ(vε) − η

2 .

This path varies continuously by Proposition 2.3.

• Seventh, a path from gt0,−2
ε = vt0,0

ε to vt0,1
ε = vt0

ε ,

s ∈ [0, 1] → vt0,s
ε ,

which by Lemma 2.4 has

Fε,λ energy along the path ≤ Fε,λ(vε) − η.

This path varies continuously by (2.62).

• Eighth, a path from vt0,1
ε = vt0

ε to −1,

t ∈ [t0, 2d(N)] → vt
ε,

which by Lemma 2.5 has

Fε,λ energy along the path ≤ Fε,λ(vε) − η + E(ε).

This path varies continuously by the reasoning in Subsection 2.5.4.

• Ninth, a path from −1 to the constant aε through constant func-
tions,

s ∈ [−1, aε] → s,
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which, by the construction of the stable critical point aε through
the negative gradient flow of Fε,λ in Subsection 2.1.2, has

Fε,λ energy along the path ≤ Fε,λ(−1).

Consider the above paths in the following order: first (reversed), second,
third (reversed), fourth, fifth, sixth (reversed), seventh, eighth and ninth;
this is the path depicted in Figure 2.1 in Subsection 2.1.3. In the order
just given, the endpoint of each partial path matches the starting point
of the next, therefore their composition in the same order provides a
continuous path in W 1,2(N), for all ε > 0 sufficiently small, from the
constant aε to the constant bε with

Fε,λ energy along the path ≤ Fε,λ(vε) − min
{
η

2 , τ
}

+ E(ε),

by Subsection 2.1.2, Lemma 2.4, Lemma 2.5 and Proposition 2.3. By
(2.2) and the fact that E(ε) → 0 by Lemma 2.4, by choosing ε > 0
sufficiently small we ensure that we have

Fε,λ energy along the path ≤ Fλ(E) − min
{
η

4 ,
τ

2

}
.

Note that (2.1) holds, by (2.2) and the path provided in Lemma 2.5,
so we have explicitly that Fε,λ(uεj

) → Fλ(E) as εj → 0. Thus, as the
above path is admissible in the min-max construction of [BW20a], we
contradict the initial assumption that Fε,λ(vε) ≥ Fε,λ(gε) + τ for some
τ > 0. We therefore conclude that for any such M as produced by the
Allen–Cahn min-max procedure in Ricci positive curvature must be such
that

Fε,λ(vε) ≤ Fε,λ(gε) + τε for some sequence τε → 0 as ε → 0.

With the above in mind we may apply Lemma 2.3, by setting r1 = R
4

and r2 = R
2 , in order to establish that E satisfies

Fλ(E) = inf
G∈C(N)

{Fλ(G) |G \BR
4
(p) = E \BR

4
(p)},

thus E is locally Fλ-minimising, as desired. In particular, by Remark
2.17, we note that every tangent cone at an isolated singularity of M
is thus area-minimising. Applying the above reasoning for each isolated
singularity of M then concludes the proof of Theorem 2.3.
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2.6.2 Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.2. To prove Theorem 2.2 we exploit the surgery pro-
cedure developed in Section 2.2. We exploit the fact that, by Remark
2.10, the proof of Theorem 2.3 ensures M is one-sided Fλ-minimising in
the sense of Definition 2.2. Because the set of isolated singular points of
M with regular tangent cone is discrete, but not necessarily closed when
n ≥ 8, it suffices for our purposes to index the isolated singularities with
regular tangent cone and make a small change to the metric around each
point, ensuring that the sum of the resulting perturbations is arbitrarily
small.

With the above in hand, we now make an arbitrarily small change
to the metric at each isolated singular point, p ∈ Sing(M), with regular
tangent cone. By applying Proposition 2.1 in a ball, Bρ(p), for some
ρ > 0 sufficiently small, there exists both:

• A metric, g̃, arbitrarily close to g in the Ck,α norm for each k ≥ 1
and α ∈ (0, 1), agreeing with g on N \Bρ(p).

• A closed embedded hypersurface, M̃ , of constant mean curvature
λ, which is smooth in Bρ(p), and agrees with M on N \Bρ(p).

In this manner we are able to locally smooth M up to an arbitrarily
small perturbation of the metric g. Thus we have shown that for each
k ≥ 1 and α ∈ (0, 1) there exists a dense set of metrics, Gk ⊂ Metk,α

Ricg>0,
such that for each h ∈ Gk, (N, h) admits a closed embedded hypersur-
face of constant mean curvature λ, smooth away from a closed singular
set of Hausdorff dimension at most n − 7, containing no singularities
with regular tangent cone. By taking the intersection over all the sets
Gk (c.f. [Whi15, Theorem 2.10]) there thus exists a dense set, G, of the
smooth metrics with Ricci positive curvature such that for each h ∈ G,
(N, h) admits a closed embedded hypersurface of constant mean curva-
ture λ, smooth away from a closed singular set of Hausdorff dimension at
most n − 7, containing no singularities with regular tangent cone. This
concludes the proof of Theorem 2.2.

Proof of Theorem 2.1. In ambient dimension 8, all singularities of M are
isolated with regular tangent cone. Hence, for each g ∈ G, as produced in
the proof of Theorem 2.2, there exists a smooth hypersurface of constant
mean curvature. The fact that G as above is then open in dimension
8 follows from an adaptation of a bumpy metric theorem for constant
mean curvature hypersurfaces contained in [Whi91, Section 7]. Precisely,
one may apply [IMN18, Proposition 2.3] to assume without loss that
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each constant mean curvature hypersurface associated to each g ∈ G
is nondegenerate, after which one can apply the above bumpy metric
theorem directly to deduce that G is open. Combined with the fact that
G is dense as shown above, this concludes the proof of Theorem 2.1.

2.A The minimal case

In this appendix we outline several alterations and simplifications that
can be made to the arguments of this chapter when the underlying hy-
persurface is assumed to be minimal (i.e. when λ = 0). In most cases,
setting λ = 0 in the above sections is sufficient to streamline many of
the arguments. Thus, we will mainly summarise the changes made to
the arguments in each section in the minimal case and only fully explain
those arguments and calculations that take an entirely different approach.
These changes are detailed for each section below:

Section 2.1: For this section one may simply set λ = 0 except for
in Subsection 2.1.2, where one may use solely the Allen–Cahn min-max
procedure in [Gua18]; note in particular here that the stable critical
points of Eε on N are then simply given by the constant functions ±1.
The fact that the properties of M as stated in Subsection 2.1.1 then
hold for any minimal hypersurface arising from the Allen–Cahn min-
max procedure of [Gua18] follow from combining the results of [Gua18,
Theorem A] and [Bel23b, Theorem 1.8]. Note that the embeddedness of
M is immediate by an application of the maximum principle.

Section 2.2: As mentioned at the beginning of the proof of Propo-
sition 2.1, for the surgery procedure one can simply use [CLS22, Propo-
sition 4.1] and thus only require the foliation due to [HS85] (in particu-
lar its one-sided extension due to [Liu19]). Note here however that for
the construction of the smoothed hypersurfaces in the proof of [CLS22,
Proposition 4.1], one is not able to guarantee any sign control on the mean
curvature (as the underlying hypersurface has zero mean curvature).

Section 2.3: Firstly, in the proof of Lemma 2.1 one may, as in
the proof of [Bel23b, Lemma 3.1], simply use the sheeting theorem for
minimal hypersurfaces available in [SS81] (or the more general version
in [Wic14a]). The remainder of the arguments in Subsection 2.3.1 go
through via the same reasoning as in [Bel23b, Section 3].

In Subsection 2.3.2 we have our first major alteration stemming from
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the fact that (2.20) becomes


H(x, s) ≥ ms for s > 0

H(x, 0) = 0

H(x, s) ≤ ms for s < 0

. (2.69)

Combined with (2.18), (2.69) then gives the following upper area bound
for the volume elements of the level sets

θ(x, b) ≤ θ(x, a)e− m(b2−a2)
2 , (2.70)

whenever |b| ≥ |a| > 0 and both a and b have the same sign. Thus we
have in particular that for each s ∈ R \ {0}

θ(x, s) ≤ e− ms2
2 θ(x, 0) ≤ θ(x, 0) = 1. (2.71)

By integrating over M we also conclude that

Hn(Γ̃(b)) ≤ e− m(b2−a2)
2 Hn(Γ̃(a)) ≤ Hn(Γ̃(a)). (2.72)

In particular, for each s ∈ R \ {0}

Hn(Γ̃(s)) ≤ e− ms2
2 Hn(M) ≤ Hn(M). (2.73)

For Subsection 2.3.3, as indicated in Remark 2.13, we have a simpler
computation to show that (2.2) holds when λ = 0. Precisely, we use the
co-area formula, slicing with d±

M
and using |∇d±

M
| = 1, to compute that

by (2.73) we have

2σEε(vε) =
∫

N
eε(vε) =

∫
N
eε(vε)|∇d±

M
| =

∫
R

(∫
Γ(s)

eε(H
ε(s))dHn

)
ds

=
∫
R

Hn(Γ(s))eε(H
ε(s))ds =

∫
R

Hn(Γ̂(s))eε(H
ε(s))

≤ 2σHn(M)Eε(H
ε).

so in particular we have

Eε(vε) ≤ Hn(M)Eε(H
ε).

For a lower bound we similarly see that

ess infs∈[−2εΛε,2εΛε]Hn(Γ̂(s))Eε(H
ε) ≤ Eε(vε).

By applying (2.24) and (2.26) for the above bounds on Eε(vε) we thus
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conclude that
Eε(vε) → Hn(M) as ε → 0; (2.74)

this is the analogue of (2.2) when λ = 0, as desired.

Section 2.4: For this section one may simply set λ = 0 in order to
streamline the arguments.

Section 2.5: We will utilise the same W 1,2(N) functions that are
constructed throughout this section but provide entirely alternative up-
per Eε energy bound computations in the case that our underlying hy-
persurface is minimal. In particular, we exhibit an alternative method to
upper bound the Eε energy of the shifting and sliding functions. These
calculations are aided by virtue of the fact that one does not have to
keep track of the enclosed volume term that appears in the energy when
λ 6= 0. Consequently, the computations we exhibit here are both more
straightforward and reflect the underlying geometry in a clear manner.
As we will later explain, the alternative upper bounds computed here
may be used directly in place of those obtained in Subsections 2.5.3 and
2.5.4 in order to prove Theorem 2.3 (for the minimal case) just as in
Subsection 2.6.1.

First we provide alternative bounds to those in Lemma 2.5 for the
sliding functions, vt

ε ∈ W 1,2(N). One may simply compute as we did
above for vε that

2σEε(vt
ε) =

∫
N
eε(vt

ε) =
∫

N
eε(vt

ε)|∇(d±
M

− t)|

=
∫
R

(∫
Γ(s+t)

eε(H
ε(s))dHn

)
ds

=
∫
R

Hn(Γ(s+ t))eε(H
ε(s))ds =

∫
R

Hn(Γ̃(s+ t))eε(H
ε(s)),

where here we have used the co-area formula to slice with (d±
M

− t), using
|∇(d±

M
− t)| = 1. Note that by (2.72) we then in fact have that

Eε(v±t̃
ε ) ≤ Eε(v±t

ε ) (2.75)

whenever t̃ ≥ t ≥ 0. In particular this shows that the sliding functions
provide a “recovery path” for the value Hn(M); this path connects +1
to −1, passing through vε, with the maximum value of the energy along
this path approximately Hn(M).

We now proceed to compute alternative upper energy bounds anal-
ogous to those in Lemma 2.4 for the shifting functions, vt,s

ε ∈ W 1,2(N).
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These bounds, along with the energy comparison for the sliding functions
above, will serve as adequate analogues to replace the bounds obtained in
Subsections 2.5.3 and 2.5.4 when working in the minimal case. Observe
that, similarly to the calculation at the beginning of the proof of Lemma
2.4, by (2.43), the co-area formula (slicing with a) and Fubini’s Theorem
we have

2σEε(vt,s
ε ) =

∫
VM

eε(v̂t,s
ε )dHn+1

F ∗g

=
∫

VM

ε

2 |∇v̂t,s
ε |2 + W (v̂t,s

ε )
ε

dHn+1
F ∗g (x, a)

=
∫

VM

ε

2
(
(Hε)′(a− tfs(x))

)2
+ W (Hε(a− tfs(x))

ε
dHn+1

F ∗g (x, a)

+
∫

VM

[
ε

2
(
(Hε)′(a− tfs(x))

)2 (1 − s)2t2

r2 |∇h(x, a)|2(x,a)

· χA×R(x, a)
]
dHn+1

F ∗g (x, a)

=
∫

M

∫ σ+(x)

σ−(x)
eε

(
Hε(a− tfs(x))

)
θ(x, a)da dHn(x)

+
∫

A

∫ σ+(x)

σ−(x)

[
ε

2
(
(Hε)′(a− tfs(x))

)2 (1 − s)2t2

r2 |∇h(x, a)|2(x,a)

· θ(x, a)
]
da dHn(x).

Using (2.27), (2.38), (2.39) (setting λ = 0), (2.71) and noting that s ∈
[0, 1], we see that the second term in the final equality is

≤ 2σ
(
t2C2

hHn(A)
r2

)
Eε(H

ε) ≤ mσ

4 Hn(M)t2Eε(H
ε)

We also note that by (2.41) and (2.71) we have

∫
M∩B3

∫ σ+(x)

σ−(x)
eε

(
Hε(a− tfs(x))

)
θ(x, a)da dHn(x)

≤
∫

M∩B3
Eε(H

ε)θ(x, 0)dHn(x) = 2σHn(M ∩B3)Eε(H
ε),

and that
∫

M\B3

∫ σ+(x)

σ−(x)
eε

(
Hε(a− tfs(x))

)
θ(x, a)da dHn(x)

=
∫

M\B3

∫ σ+(x)

σ−(x)
eε

(
Hε(a− t)

)
θ(x, a)da dHn(x)

≤ max
s∈[−2εΛε,2εΛε]

e− m(s+t)2
2

∫
M\B3

Eε(H
ε)θ(x, 0)dHn(x)

= max
s∈[−2εΛε,2εΛε]

e− m(s+t)2
2 2σHn(M \B3)Eε(H

ε).
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Combining the above three bounds, dividing by 2σ and by adding and
subtracting the term Hn(M \B3)Eε(H

ε) we see that

Eε(vt,s
ε ) ≤ Hn(M)Eε(H

ε) + m

8 Hn(M)t2Eε(H
ε)

+
(

max
s∈[−2εΛε,2εΛε]

e− m(s+t)2
2 − 1

)
Hn(M \B3)Eε(H

ε).

For fixed t ∈ R we consider the Taylor series expansion as follows

e− m(s2+2st)
2 = 1 − m

2 (s2 + 2st) +R(s)

where R(s) is the remainder term from Taylor’s theorem of order O(s2).
Thus for ε > 0 sufficiently small we have that

max
s∈[−2εΛ,2εΛ]

e− m(s2+2st)
2 ≤ 1 + γε2,

for some constant γ > 0 (depending on a fixed upper bound for ε and
the upper bound |t| ≤ 2d(N)). We thus see that by (2.27) we have

(
max

s∈[−2εΛε,2εΛε]
e− m(s+t)2

2 − 1
)

Hn(M \B3)Eε(H
ε)

≤ (e− mt2
2 − 1)Hn(M \B3) + γε2,

potentially increasing the constant γ > 0 (in particular through multi-
plication by β > 0). Again combining this with (2.27) we see that

Eε(vt,s
ε ) ≤ Hn(M) + m

8 Hn(M)t2 + (e− mt2
2 − 1)Hn(M \B3) + γε2,

potentially increasing the constant γ > 0 again. We now proceed to show
that, by setting

h(t) = m

8 Hn(M)t2 + (e− mt2
2 − 1)Hn(M \B3),

we have h(±t0) < 0 and h(t) ≤ 0 for all t ∈ [−t0, t0] for some t0 > 0 to be
chosen. These bounds on h(t) then directly imply analogous bounds to
those in the conclusion Lemma 2.4, from which the remaining bound in
the minimal case for the conclusion of Lemma 2.5 directly follows when
combined with (2.75) as deduced above.

First note that h(0) = 0. We compute

h′(t) = m

4 Hn(M)t−mte− mt2
2 Hn(M \B3)
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from which we see that h′(t) = 0 for t = 0 and t = ±t2 where

t22 = − 2
m

log
(

Hn(M)
4Hn(M \B3)

)
;

note that t2 > 0 is then well defined and strictly positive by virtue of
(2.36). Furthermore, we note that

h′′(t) = m

4 Hn(M) −me− mt2
2 Hn(M \B3) +m2t2e− mt2

2 Hn(M \B3)

so that h′′(0) < 0 by virtue of (2.36) again. We thus conclude that
as h(0) = h′(0) = 0 and h′′(0) < 0 we have and h(t) < 0 for all t ∈
[−t0, t0] \ {0} for some sufficiently small t0 ∈ (0, t2). This thus directly
implies, for all ε > 0 sufficiently small, that as

Eε(vt,s
ε ) ≤ Hn(M) + h(t) + γε2,

we have
Eε(vt,s

ε ) ≤ Eε(vε) + E(ε) (2.76)

where E(ε) → 0 as ε → 0, where we are using (2.74). Moreover, we
conclude that

Eε(v±t0,s
ε ) ≤ Eε(vε) − η (2.77)

where we may choose for example η = h(t0)
2 < 0. These are the desired

analogues in the minimal case of the general (i.e. λ 6= 0) energy bounds
obtained in Lemma 2.4.

For Subsection 2.5.5 one may simply replicate the calculations and
set λ = 0, ignoring any volume terms that appear in the energy. Note
that this also means that the choice of R ∈ (0, r0) made in the proof of
Proposition 2.3 need only satisfy

2n+2Rnωn + CpR
n <

η

4

in place of (2.64) and so that 0 < R < Rl (where Rl is defined as in
Subsection 2.1.1). Thus the choice of R in the statement of Proposition
2.3 may be taken to be strictly larger than in the general λ 6= 0 case.

Section 2.6: For the proof of Theorem 2.3 in Subsection 2.6.1 we
first note that in the minimal case we do not need to include the first of
ninth portions of the path that flow to stable critical points (as ±1 are the
stable critical points of Eε in this case). The remaining seven portions of
the whole path (listed as the second to eighth paths in Subsection 2.6.1)
remain identical save for the fact that the upper energy bounds provided
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by (2.75), (2.76) and (2.77) may be used in the minimal case in place of
the respective applications of Lemmas 2.4 and 2.5 for the general (λ 6= 0)
case.

For the proof of Theorem 2.2 in Subsection 2.6.2 we may, as men-
tioned in the adaptations for Section 2.2 above, simply apply the surgery
procedure given by [CLS22, Proposition 4.1]. For the openness conclu-
sion in proof of Theorem 2.1 one may appeal instead to the results of
[Whi91, Section 2] in the minimal case.
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